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Linear Four-Point LiIDAR SLAM
for Manhattan World Environments

Eunju Jeong!, Jina Lee!, Suyoung Kang?, and Pyojin Kim?

Abstract—We present a new SLAM algorithm that utilizes an
inexpensive four-point LiDAR to supplement the limitations of
the short-range and viewing angles of RGB-D cameras. Herein,
the four-point LiDAR can detect distances up to 40 m, and it
senses only four distance measurements per scan. In open spaces,
RGB-D SLAM approaches, such as L-SLAM, fail to estimate
robust 6-DoF camera poses due to the limitations of the RGB-D
camera. We detect walls beyond the range of RGB-D cameras
using four-point LiDAR; subsequently, we build a reliable global
Manhattan world (MW) map while simultaneously estimating
6-DoF camera poses. By leveraging the structural regularities
of indoor MW environments, we overcome the challenge of
SLAM with sparse sensing owing to the four-point LiDARs. We
expand the application range of L-SLAM while preserving its
strong performance, even in low-textured environments, using
the linear Kalman filter (KF) framework. Our experiments in
various indoor MW spaces, including open spaces, demonstrate
that the performance of the proposed method is comparable to
that of other state-of-the-art SLAM methods.

Index Terms—Vision-Based Navigation, Computer Vision for
Transportation, Sensor Fusion, RGB-D Perception.

I. INTRODUCTION

IMULTANEOUS localization and mapping (SLAM) is a

fundamental problem in robotics that involves building a
map of an unknown environment and simultaneously estimat-
ing a 6-DoF pose of a robot within that map. Typical feature-
based RGB-D SLAM methods such as ORB-SLAM3 [1]
and DROID-SLAM [2] demonstrate robust performance in
rich-texture environments. However, these SLAM methods
can be degraded in low-texture environments. To circumvent
this issue, L-SLAM [3] presents a linear RGB-D SLAM by
tracking the Manhattan frame (MF) [4], [5] using the structural
regularities of the scene. However, owing to a short measuring
distance (up to 5 m) and limitation in the viewing angle of
depth cameras, the performance of RGB-D SLAM is degraded
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Fig. 1. Accumulated point cloud built using four radially-spaced single-point
LiDARs (gray lines) and commercial visual-inertial odometry (magenta) (left).
Depth images from an RGB-D camera are ineffective in wide and open spaces
(bottom). We overcome SLAM with sparse sensing problems caused by the
four-point LiDARSs utilizing the Manhattan world (MW) assumption (right).

in wide and open spaces, which are commonly encountered in
structured indoor environments as shown in Fig 1.

LiDAR odometry and SLAM [6], [7] can be an alternative to
overcome the limitations of RGB-D cameras, showing promis-
ing SLAM results. However, conventional LiDAR sensors such
as Velodyne VLP-16 are too heavy and expensive to attach to
micro-UAVs such as Crazyflie 2.0 [8] or small autonomous
robots, and thus cannot be applied universally.

To address these issues, we propose linear four-point LIDAR
SLAM (FL-SLAM) for structural environments, which extends
the previous L-SLAM to achieve consistent performance even
in wide and open spaces. We employ the inexpensive four
single-point LiDARs that can detect only four ranges in a
single scan with a maximum range of 40 m to perceive sur-
rounding orthogonal walls beyond the short-range of the RGB-
D camera. The four-point LiDARSs can obtain a significantly
smaller amount of sparse range measurements than the typical
LiDAR with more than 180 dense range measurements per
scan, resulting in a SLAM with a sparse sensing problem.
We overcome this challenging problem by effectively utilizing
the Manhattan world (MW) structural regularities [9] of the
indoor environments, and line RANSAC to represent detected



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER, 2023

surrounding walls as orthogonal lines directly modeled as
landmarks with insufficient range measurements. We evaluate
the proposed method in various indoor MW environments
and demonstrate that FL-SLAM produces comparable 6-DoF
camera poses to other state-of-the-art SLAM approaches. Our
main contributions are as follows:

e We utilize MW structural regularity to build a reliable
global MW map with sparse sensing of inexpensive four-
point LiDARs.

e We seamlessly integrate with a linear KF-based RGB-
D SLAM (L-SLAM) based on the global MW map
built using four-point LiDARs to enable its effective
performance in wide and open spaces.

e We evaluate the proposed FL-SLAM on the author-
collected building-scale indoor MW environments,
demonstrating comparable estimation results compared to
other state-of-the-art SLAM methods.

II. RELATED WORK

Depth-based and RGB-D SLAM methods have been ac-
tively studied in robotics and computer vision communities. In
wide and open spaces in indoor environments, the performance
of RGB-D SLAM, such as L-SLAM [3], [10], is severely
degraded because it cannot identify the surrounding walls due
to the limited sensing range of an RGB-D camera. ORB-
SLAM3 [1], a traditional SLAM that uses expensive SLAM
techniques (loop closure, pose graph optimization), is also
degraded in wide and open spaces due to the limitations
of the RGB-D camera. Recently, deep learning-based RGB-
D SLAM methods have been developed [2], [11]-[13]. [11]
utilizes points and line segments together with plane detection
similar to those of L-SLAM, but they use CNNs to detect
planes. However, deep learning-based RGB-D SLAM algo-
rithms require expensive additional devices such as GPUs for
training and long training times.

Other LiDAR odometry and SLAM studies [6], [7], [14]
use Velodyne LiDAR, which can measure up to 100 m
with high accuracy and a horizontal field of view of 360
degrees, showing promising odometry and SLAM results in
open spaces. However, conventional LiDAR sensors (Velodyne
VLP-16 and Ouster OS1) are too expensive and heavy to attach
to micro-UAVs such as Crazyflie 2.0 [8] or small autonomous
robots, and thus cannot be applied universally.

We utilize inexpensive four-point LiDARs that can only
measure four ranges with a maximum range of 40 m per
scan, resulting in SLAM with a sparse sensing problem.
Performing SLAM with sparse sensing presents a significant
challenge, as the system simultaneously constructs the precise
map and estimates the camera pose using limited and sparse
measurements with increased uncertainty. Only a few studies
have focused on solving this problem. [15]-[17] use the Rao-
Blackwellized particle filter (RBPF) [18], and [19] employs the
pose graph optimization to solve the problem of SLAM with
sparse sensing. [15] extracts line features as landmarks from
the consecutive observation, including loop-closure detection
to refine the results. [16] also uses loop-closure detection to
refine the map and the estimated pose while assuming that the

walls are orthogonal. We also adopt the MW assumption [20]
to build an accurate map from sparse sensing, but we can
produce a reliable 3D map and accurately estimate the 6-
DoF camera pose without the loop-closure detection technique
within a linear KF framework. Similar to us, [17], [19] use a
micro UAV [8] with a four-point LiDAR, which can sense
four ranges with a maximum range of 4 m per scan. [19]
is the first to apply a graph-based approach to the problem
of SLAM with sparse sensing. They replace scan-matching as
the frontend for sparse range data and propose an approximate
match heuristic for efficient loop-closure detection. However,
all these SLAM with sparse sensing algorithms are for 2D
SLAM with the assumption that the translational motion of the
camera is always planar. By contrast, we build a 3D structured
map and estimate the full 6-DoF camera motion.

III. PROPOSED METHOD

Our proposed FL-SLAM method builds on the previous
linear RGB-D SLAM (L-SLAM) [3]. However, while L-
SLAM fails to track accurate 6-DoF egomotion of the camera
in wide and open spaces due to the limited sensing range of the
depth camera, we expand it using sparse range measurements
from four inexpensive single-point LiDARs. Fig 2 shows an
overview of the proposed FL-SLAM method.

A. Linear RGB-D SLAM (L-SLAM)

We summarize the L-SLAM briefly (for full details, refer
to [3]). L-SLAM has three main steps: 1) it tracks structural
regularities (MF) to obtain the 3-DoF drift-free rotation and
detects dominant orthogonal planar features in the scene
using the tracked MF; 2) it estimates 3-DoF translation by
minimizing the de-rotated reprojection error from the tracked
points; and 3) it measures the 1-D distances to the identified
orthogonal planes [22] from the currently tracked camera pose
and updates the 3-DoF translation and 1-D distance of the
associated planes in the global structure map within a linear
Kalman filter (KF) framework.

The key idea of the drift-free rotation estimation in L-
SLAM is to track the MF, the set of three orthogonal axes
commonly found in structured indoor environments. L-SLAM
utilizes the vanishing directions (VDs) [23] from image lines
in RGB images and surface normals from depth images [24] to
track the MF of the structured environments. Once the absolute
orientation of the current scene has been established, L-SLAM
can identify the dominant orthogonal planes whose normals
are aligned with the tracked MF. Wide and open spaces,
however, do not contain dominant vertical planes (walls) that
can be detected by the RGB-D camera due to the limited
sensing range, resulting in highly degraded rotational motion
tracking. In addition, L-SLAM can only update the height
value of the camera motion (Z-axis direction in MF) among
the 3-DoF translational motion since only the horizontal planes
(floors or ceilings) are observable in open spaces as shown
in Fig 1. Due to the nature of VO, L-SLAM cannot avoid
accumulated drift error over time in X and Y translational
motion in wide and open spaces.
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Fig. 2. Overview of the proposed FL-SLAM algorithm. We highlight key components (magenta) of the proposed approach for our main contributions. Four
radially-spaced LiDARs give only four range readings in a single scan. We obtain an accumulated point cloud with Apple ARKit, a commercial visual-inertial
odometry (VIO) known to be the most stable and accurate [21]. We build a global MW map by projecting accumulated point clouds onto the floor in the MW
and detecting/tracking orthogonal lines. Note that we utilize 3-DoF rotation from ARKit when L-SLAM fails to track in open spaces (a box filled in gray).
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1) Converting Range Measurements to Point Cloud: To
obtain a 3D point cloud of the structured environment with
four range measurements as shown in Fig. 4, we convert each
range measurement from a body frame b to a global Manhattan
frame g using the following equation. To ensure a reliable
point cloud, we only convert range measurements between 0.4
and 30 m into 3D Cartesian coordinates:

Fig. 3. The custom-built rig with four LiDARs and iPhone 12 Pro Max (left).

‘We connect four TFO2 Pro LiDARSs to an Arduino UNO, and obtain four range
measurements at 15 Hz. We illustrate the body frame of four LiDAR sensors
and the camera frame. Top view of four radially-spaced LiDARs (right). We
place the four ToF LiDAR sensors orthogonal to each other.

B. Orthogonal Wall Detection with Four LiDARs

To mitigate drift error in the X and Y translation in open
spaces, it is crucial to detect surrounding walls in the struc-
tured environments. To achieve this, we designed a custom-
built rig using a 3D printer to fix four LIDARs and an RGB-D
camera (iPhone 12 Pro Max) in a single rigid body with the
four-point LiDAR placed diagonally as shown in Fig. 3. As in
a previous study on SLAM with sparse sensing [19], placing
the four-point LiDAR in four directions (front, right, left, and
back) can result in inaccurate measurements and noisy data in
long corridors.

The overall procedure of the proposed FL-SLAM is shown
in Fig. 2. We gradually extend the global MW map by fitting
the lines to the accumulated point cloud obtained through
current detected points from the four LiDARs and the ARKit
6-DoF camera poses from the iPhone. The global MW map
accumulates walls detected from four-point LiDAR and RGB-
D images, and each wall consists of three components: 1)
1-D distance (offset) from the origin of the global Manhattan
frame, 2) alignment for the global Manhattan frame, and 3)
two endpoints of the line or plane.

X, X,

Yg _ Yb _ Rgb tgb 4x4

Zy| Toe Zy | Top = [01><3 €R )
1 1

where X, Y, and Z, represent the detected 3D point ex-
pressed in the global Manhattan frame, while Xj, Y3, and
Zp represent the same point expressed in the camera body
frame. The global Manhattan frame can be determined at
the first camera frame in the FL-SLAM. The 4 x 4 rigid
body transformation matrix Ty, € SE(3) represents the 6-DoF
pose of the camera, with t,, € R® representing the 3-DoF
translational motion of ARKit and Ry, € SO(3) representing
the 3-DoF rotational motion of ARKit in the global Manhattan
frame. We employ Apple ARKit 6-DoF poses to build an
accurate and consistent 3D point cloud [21] with four range
measurements in a single scan.

2) Manhattan World Mapping in Real-time: Algorithm 1
outlines the procedure for building a global MW map parallel
to the X and Y axes of the global Manhattan frame using
the four-point LiDARs as shown in Fig. 4. We project an
accumulated 3D point cloud onto the floor in the MW, thus
utilizing X, and Y, obtained from Eq. (1) as input.

Lines 1 to 7 describe extending the length of the already
detected lines (walls) stored in the global MW map as new
points are detected per scan. If the distance between the newly
detected point and the line stored in the global MW map is less
than 20 cm, we treat the currently detected point corresponds
to the line stored in the global MW map and update the
endpoint of the line.
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Fig. 4. Accumulated point cloud (blue dots) with sparse range measurements
and Apple ARKit 6-DoF poses (magenta). We only utilize ARKit 6-DoF poses
to build an accurate and consistent point cloud. We plot a global MW map
(red and green) built with four-point LiDARs using the line RANSAC.

Algorithm 1 MW Mapping with Four-Point LiDARs
Input: X and Y coordinates of the accumulated point cloud

in the global Manhattan map frame
Output: Global MW Map

1: for k time steps do

2:  if already detected walls exist then

3: if currently detected points correspond to already
detected walls then

4 Update endpoints of each wall

5: Remove the points used to extend each wall

6: end if

7. end if

8:  while true do

9: Line fitting with line RANSAC

10: if the number of inlier points < threshold then

11: break

12: else

13: Structure alignment in MW

14: Remove the points used to generate the new wall

15: if newly detected wall corresponds to one of the
already detected walls then

16: Combine with the existing wall

17: end if

18: end if

19:  end while

20: end for

Lines 8 to 20 describe detecting new lines and incrementally
extending the global MW map as new dominant lines are
detected per scan. We fit lines to the accumulated 2D point
cloud using the line model-based RANSAC framework [25],
which is suitable for robustly estimating the line model even
in the presence of noise and outliers from sparse sensing. To
accurately recognize dominant structural features such as walls
in the structured environments, we add the newly detected line
to the global MW map only if the number of inlier points of
the line estimated by line RANSAC is more than 40. Then, if
the angle difference between the currently detected line and
one of the X and Y axes of the global Manhattan map frame is

less than 5 degrees, we refit the slope of the line to orthogonal
to the corresponding axis. We consider two lines as the same
wall landmark if their offset difference is less than a certain
threshold (in our experiments, 10 to 20 cm is appropriate)
and they have the same alignment. We then merge the newly
detected line with the corresponding line in the global MW
map. To avoid detecting already detected lines, we remove
the points used to generate the orthogonal lines from the
accumulated 2D point cloud and repeat line RANSAC until
we can no longer find a reliable new line from the current
scan. In this way, we can build an accurate global MW map
per scan from sparse sensing with the inexpensive four single-
point LiDARs as shown in Fig. 4.

Note that the global MW map stores not only the walls
detected by the four-point LiDARSs, but also the walls, floor,
and ceiling detected by RGB-D images in the same form of
lines (offset, alignment, and endpoints), and there are no over-
lapping walls in the global MW map. Detecting orthogonal
planes from RGB-D images for each frame can be referenced
from L-SLAM [3]. By using a low-cost four-point LiDAR, we
can detect walls beyond the range of detection of the RGB-D
camera and supplement the global MW map of the previous
L-SLAM, thereby producing a complete 3D global MW map.

C. Linear Four-Point LiDAR SLAM (FL-SLAM)

1) State Vector Definition: The state vector in the KF
consists of the 3-DoF translational camera motion and 1-
D distances (offset) of the orthogonal planar features in the
global MW map with respect to the origin of the global
Manhattan map frame C,. We express the state vector x as
follows:

X = [pT,ml,...,mn]T € R3™" 2)

where p = [m Y Z]T € R3 denotes the 3-DoF camera
translation expressed in the global Manhattan map frame C|,.
The map m; = [o0;] T € R denotes the 1-D distance (offset)
of the orthogonal planes such as walls, floor, and ceiling, and
n is the number of orthogonal planar features in the global
MW map. When the new orthogonal planes (mostly newly
detected walls) are discovered with either four-point LiDARs
or an RGB-D camera, they are added to the global MW map
and corresponding offset m,,,, is augmented to the end of
the state vector x.

2) Propagation Step: We predict the next step based on
the 3-DoF translation estimated by LPVO [26] between the
consecutive image frames. We propagate the 3-DoF translation
with the process model xj, = X)—1 + [AP} 4 1 O1xn]
where Apj r—1 is the estimated 3-DoF translation from
LPVO. We assume the 1-D distance of orthogonal planes in
the global MW map does not change in the process model.

3) Correction Step with Global MW Map: Algorithm 2
outlines the state update process when the current scene is
an open space (Lines 2 to 5) and when it is not (Lines 6 to
9). We utilize 3-DoF rotational motion from ARKit when the
scene is an open space where accurate and drift-free rotation
cannot be obtained due to MF tracking failure. Since we define
open space as a situation where we cannot detect vertical
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Fig. 5. Tllustration of the Kalman filter components for FL-SLAM: the state
vector (pg, my) and observation model (yy) at k-th camera frame. C'y and
C represent the origin of the global MW map frame and center of k-th
camera frame, respectively.

Algorithm 2 State Update in Linear KF
1: for k time steps do
2:  if the current scene is an open space then
3: Update X,Y translation with currently observed
points from the four-point LiDARs

4: Update Z translation with currently detected horizon-
tal planes from the RGB-D images

5: Add new landmarks to the end of the state

6: else

7: Update translation with currently detected planes
from the RGB-D images

8: Add new landmarks to the end of the state

9:  end if

10: end for

planes (walls) using an RGB-D camera, we determine each
camera frame whether the current scene is an open space or
not using the number of surface normal vectors (SNV) for
each pixel used to track MF over time. If the number of SNV
corresponding to the X and Y global Manhattan frame axes
is less than the certain threshold (in our experiment, 10000
to 15000 is appropriate), the dominant walls of the two axes
cannot be identified in the current RGB-D scene. In this way,
the proposed FL-SLAM can obtain accurate and stable 3-DoF
rotation in the entire trajectory so that we can utilize a linear
KF [27], [28] with the state vector of the camera translation
and 1-D offset of the walls.

In this open space, FL-SLAM updates the estimated X,Y
translation from the LPVO of the current state through the
points currently observed with the four-point LiDARs as
shown in Fig. 5. A plane orthogonal to the Z-axis is always
detectable using the RGB-D camera. Therefore, in open space,
only X,Y translation needs to be corrected with LiDAR
points observed through the four-point LiDARs. To update
the current state vector, we match the currently observed
point and the nearest wall in the global MW map only if
the distance between them is less than 10 cm. For example,

as shown in Fig. 5, LiDAR points 1 and 2 match each global
wall, and we consider LiDAR points 3 and 4 as unreliable
observations and do not use them for updating the state vector.
We perform the KF update so that the residual, which is
the difference between the actual measurement from LiDAR
and the predicted measurement from the state vector, is zero
for all matched points with global walls in the global MW
map. The residual rj at k-th camera frame and the predicted
measurement model y; are expressed as:

Iy =Yr — Yk 3)
mi ; — Tg
. mo i — Yk m

where yj is the actual measurement from the LiDAR sensor,
and zy, yr, and z; are 3-DoF camera translation in the state
vector. m3 ; is a global map orthogonal to the Z-axis of the
global MW map frame, and corresponding ys ; is an actual
measurement for the floor or ceiling detected by an RGB-
D camera. m is the number of matched orthogonal planar
features in the global MW map. We set the measurement noise
in the KF to 7 cm in the open spaces, reflecting the range
measurement noise of four LiDARs.

When the current RGB-D scene is not an open space where
we can detect surrounding walls with the RGB-D camera, we
update the state vector in the KF by observing the distance
between the orthogonal planes currently detected through the
RGB-D camera, which is the same as the correction step of
L-SLAM. When the vertical planes (walls) cannot be detected
in the RGB-D images in wide and open spaces, we update
3-DoF translational motion and the global MW maps with
currently observed range measurements from four LiDARs.
In this manner, FL-SLAM can effectively update the 3-DoF
translation and 1-D map in open spaces.

IV. EVALUATION

We both qualitatively and quantitatively evaluate the pro-
posed FL-SLAM on various author-collected RGB-D and
corresponding sparse range measurement datasets obtained by
the custom-built sensor rig as shown in Fig. 3. Since none of
the existing datasets comprise both RGB-D images and sparse
range measurements, we obtain the datasets by ourselves. We
obtain RGB and depth images of 256 x 192 at 15 Hz using the
Stray Scanner app on the iPhone 12 Pro Max while simultane-
ously acquiring the four range measurements corresponding to
each RGB-D image using the four-point LIDAR. We connect
four TF02-Pro LiDARs to a single Arduino Uno, connecting
it to a laptop with Intel Core i5 (2.42 GHz) to obtain real-
time distance measurements. We implement the proposed FL-
SLAM in MATLAB on a desktop computer with an Intel Core
i7 (2.90 GHz) and 16 GB memory.

To demonstrate improved performance compared with the
L-SLAM, we collect real-world building-scale datasets that
include various open spaces commonly found in typical uni-
versity buildings or offices as shown in Fig. 6. As we cannot
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TABLE I
EVALUATION RESULTS OF FDE (UNIT: M) ON AUTHOR-COLLECTED CLOSED-LOOP DATASETS.

Experiment | FL-SLAM (Ours) L-SLAM  Graph-SLAM  DROID-SLAM  ORB-SLAM3 | Length (m)

Square Corridor 0.350 38.426 1.055 0.225 0.588 92.266

Open Hallway 1 0.297 1.580 0.191 0.070 0.077 24.604

Open Hallway 2 0.190 X 0.802 0.079 0.060 44.160
TABLE II

EVALUATION RESULTS OF ATE RMSE (UNIT: M) ON AUTHOR-COLLECTED OPEN-LOOP DATASETS.

L-SLAM  Graph-SLAM  DROID-SLAM  ORB-SLAM3 | Length (m)

Experiment | FL-SLAM (Ours)

L-shaped Corridor 0.660 1.990
U-shaped Corridor 0.738 1.476
Open Hallway 3 0.390 7.164

29.373 0.845 1.510 52.032
3.177 2.657 3.846 64.361
0.406 0.326 0.699 34.564

Square Corridor L-shaped Corridor

Open Hallway 1 U-shaped Corridor

Fig. 6. Example images of open spaces in author-collected datasets. We
overlay the tracked MF (floor and ceiling) on top of the RGB images in the
second row. In the third row, there are few valid depth values in the depth
images other than nearby areas such as the floor and ceiling.

obtain a ground truth trajectory, we experiment with three
closed-loop sequences where the start and end points of the
trajectories are the same to evaluate whether the proposed FL-
SLAM accurately updates the camera translation based on the
global MW map. We experiment with three other open-loop
sequences to evaluate the entire trajectory by comparing it
to the ARKit trajectory as ground truth. Although we cannot
obtain absolute ground truth, it is well-known that Apple
ARKit is very stable and accurate at short distances [21].

We compare our FL-SLAM with the state-of-the-art SLAM
methods, namely DROID-SLAM [2], ORB-SLAM3 [1], and
Graph-SLAM [19]. DROID-SLAM and ORB-SLAM3 are
RGB-D SLAM methods, and Graph-SLAM is a 2D LiDAR
SLAM approach with sparse sensing for the Crazyflie [8]
nano-quadrotor. We utilize RGB-D images as input data for
DROID-SLAM, ORB-SLAM, and L-SLAM. As the input
data of Graph-SLAM, we use the same range measurements
obtained by four-point LiDARs and X, Y translation, and ori-
entation as the proposed FL-SLAM utilizes to update camera
poses. For a fair comparison, we test each SLAM method
made publicly available by the original authors from their
official GitHub pages with default parameter settings.

We quantitatively evaluate the performance of five SLAM
algorithms using the final drift error (FDE) metric, which is

[J15FT

U-shaped Corridor

Square Corridor Open Hallway 1

Fig. 7. Selected 3D global MW map built with four-point LiDARs, and the
camera trajectory results (magenta) of the proposed FL-SLAM. The red and
green walls are orthogonal to the X and Y axes of the global MW map frame,
respectively. The floor and ceiling in blue are not shown for visibility.

the end-point position error in meters at the three closed-loop
datasets as shown in Table I. Since FL-SLAM utilizes ARKit
orientation in open spaces for three open-loop datasets, we
use the absolute trajectory error (ATE) metric for translational
motion comparison at the three other open-loop datasets as
shown in Table II. For Graph-SLAM, which is 2D SLAM,
we compare only the X and Y translation with the ARKit
trajectory. The best results are in bold, and the second-
best results are underlined. As shown in Table I and Table
II, FL-SLAM demonstrates comparable performance to other
state-of-the-art SLAM algorithms that use loop detection by
successfully updating the estimated translation from VO based
on the global MW map constructed through four-point LiDAR.
For a detailed analysis, we focus on three sequences: Square
Corridor, Open Hallway 1, and U-shaped corridor.

A. Square Corridor

The Square Corridor is a long corridor over 92 meters in
total length, which includes open spaces and a narrow corridor
advantageous for L-SLAM to detect surrounding walls. Fig. 8
shows the open spaces that can be seen in the sequence. When
the orthogonal planar features are insufficient to track the MF
due to the short-range measurement of the RGB-D camera, L-
SLAM fails significantly in estimating the camera trajectory.
In contrast, our proposed FL-SLAM can successfully build
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Fig. 8. Qualitative comparisons of the Square Corridor sequence. We overlay
estimated trajectories with five SLAM methods on the floor plan, showing
the location of the open spaces in the sequence. A black dot indicates the
beginning and end of the sequence to evaluate the loop-closing performance.
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Fig. 9. Estimated trajectories with the proposed (magenta) and other SLAM
approaches on the Open Hallway 1 sequence. Since an RGB-D camera looks
at open spaces where vertical walls are not observable (red boxes), L-SLAM
fails to estimate camera motion accurately while FL-SLAM does not.

a global MW map even in such open spaces using a low-
cost four-point LiDAR as shown in Fig. 7 (left), allowing
for accurate camera translation updates within the linear KF
framework. We can obtain stable trajectories by using the
rotation of ARKit in open spaces. We show comparable
performance to ORB-SLAM and DROID-SLAM, which use
the loop-detection technique by returning 0.350 m to the
position starting with the Square Corridor sequence without
additional use of loop-detection.

B. Open Hallway 1

Open Hallway 1 is a wide space commonly found indoors,
consisting mostly of an open space environment. The global
MW map generated using our four-point LiDAR and the
resulting trajectories of FL-SLAM and other algorithms are
shown in Fig. 7 (middle) and Fig. 9. Similar to the Square
Corridor sequence, FL-SLAM achieves almost successful loop

ORB-SLAM3

Open Space

2 . o e Y | [N |

[

|

@
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S T—

Fig. 10. Qualitative comparisons of the U-shaped Corridor sequence, over-
laying estimated trajectories with six VIO/SLAM approaches on the floor
plan. We employ Apple ARKit for the ground-truth (black), and the black
dot represents the starting point of the sequence. The estimated path for FL-
SLAM (magenta) matches the floor plan most consistently.

detection and estimates reasonable trajectories compared to
other state-of-the-art SLAM algorithms.

C. U-shaped Corridor

The U-shaped Corridor is a long corridor with a total
length of 64 meters, commonly found in indoor structured
environments. One side of the long corridor of the sequence
is almost glass, while the other side has white cement walls
with few textures. Due to the glass walls, we obtain a noisy
point cloud, which leads to performance degradation in Graph-
SLAM. On the other hand, the proposed FL-SLAM effectively
uses the MW assumption despite this inaccurate and noisy
point cloud, allowing for the construction of a reliable global
MW map as shown in Fig. 7 (right) and Fig. 11. The map
produced by the four-point LiDAR for each frame is effective
not only in open spaces but also in updating the short trajectory
translation estimated by VO effectively in a long corridor by
detecting far distant walls using the four-point LiDAR. The
performance of feature-based SLAM such as ORB-SLAM3
and DROID-SLAM is degraded due to the lack of texture in
indoor environments.

D. Ablation Study on the Use of Four-Point LiDARs

The blue-dotted trajectory in Fig. 11 is the result of simply
replacing the 3-DoF rotation of L-SLAM with the 3-DoF
rotation of the ARKit in open spaces where L-SLAM obtains
incorrect rotational camera motion. This blue-dotted trajectory
is the result of building a global MW map and updating the 3-
DoF translation using only the orthogonal planes detected via
RGB-D camera, such as L-SLAM, without using orthogonal
walls detected by four-point LiDAR. The magenta color tra-
jectory is our proposed complete FL-SLAM algorithm, which
uses the rotation of ARKit in open spaces while also using the
detected orthogonal walls by utilizing the four-point LiDAR
to update the estimated translation by VO at every frame.
Through this ablation study of the use of four-point LiDAR,
we demonstrate that the good performance of the proposed
FL-SLAM is not simply because of the rotation of ARKit,
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Fig. 11. Ablation study on the use of four-point LiDARs for FL-SLAM. We
overlay the trajectories of FL-SLAM, ARKit, and the global MW map on the
floor plan. We can build a consistent global MW map similar to the floor plan
using the inexpensive four-point LiDARs with the proposed FL-SLAM.

but because we effectively map using four-point LiDAR and
update the translation accurately based on it.

As shown in Fig. 11, with an RGB-D camera, it is possible
to detect walls only within 5 m. When passing through a
narrow corridor, it has only been possible to update the
translation estimated by VO based on the side walls, and
the front and back of the trajectory cannot be corrected.
Therefore, using only an RGB-D camera makes it difficult
to compensate for the drift caused by the nature of VO, as
seen in the blue-dotted trajectory. However, since we use a
four-point LiDAR capable of measuring up to 40 m, we can
detect orthogonal walls even in the far distance and update the
short trajectory translation estimated by VO to make it similar
to the actual trajectory. Comparing the blue-dotted trajectory
in Fig. 11 with the trajectory of L-SLAM (blue) in Fig. 10,
the use of the rotation of ARK:it also slightly helps to correct
the shortened trajectory, but updating the translation through
the wall detected by the four-point LiDAR has a significant
impact.

V. CONCLUSION

We propose a new linear KF-based SLAM algorithm that
complements the short measurement range limitations of
conventional RGB-D cameras by effectively utilizing a low-
cost four-point LiDAR that can measure up to 40 m and
sense only four distance measurements per scan, resulting
in SLAM with sparse sensing problem. We overcome this
challenging problem by effectively using MW assumption to
build a reliable global MW map with the four-point LiDARs.
Through experiments in various indoor MW environments,
we demonstrate that FL-SLAM significantly expands the ap-
plication range of L-SLAM by accurately detecting walls
beyond the range of detection of the RGB-D camera using the
four-point LiDARs. Furthermore, we demonstrate comparable
performance to other state-of-the-art SLAM methods without
using a loop detection algorithm.
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