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Abstract—This paper proposes a new approach to scale-aware
monocular visual odometry (VO) and extrinsic calibration using
constraints on camera motion by vehicle kinematics. Main idea
is to utilize the Ackermann steering model to observe absolute
metric scale in turning motion. To describe motion of the camera
attached to the vehicle, we first estimate unknown camera-
vehicle relative pose by the proposed extrinsic calibration method.
To stably observe scale, we detect turn regions and design an
observer to estimate the absolute scale as a function of the camera
rotation and direction of translational motion during turning.
Using the observed scale, we propose an absolute scale recovery to
estimate the unknown scale between turns. Because the proposed
scale observer becomes singular near zero rotation, we conduct
sensitivity analysis on the scale observer, and investigate appro-
priate conditions for stable scale estimation. For quantitative
evaluation of the extrinsic calibration and the absolute scale
recovery, we randomly generate synthetic driving datasets with
various noise conditions, and evaluate the performance of each
module statistically by Monte-Carlo simulations. To evaluate the
overall performance, we implement our method and state-of-the-
art monocular and stereo VO methods in the public outdoor
driving KITTI dataset, and our method shows competitive scale
recovery performance with no external sensor and no assumption
on surroundings such as planar ground landmarks. To show
promising applicability, we collect real-world driving datasets in
two multi-floor underground parking lots, and demonstrate the
accurate absolute scale recovery performance of our method in
indoor driving situations.

Index Terms—Monocular visual odometry, scale ambiguity,
extrinsic calibration, vehicle kinematics

I. INTRODUCTION

NAVIGATION is one of fundamental capabilities for an
autonomous mobile vehicle. For navigation, ego-motion

estimation using cameras called visual odometry (VO) has
received attention due to its compact setting and rich envi-
ronment expression from an image. Thus, the VO has been
actively studied with various configurations: a single camera
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[1], [2], multiple cameras [3], [4], VO with an inertial measure-
ment unit (IMU) [5], [6], and combining vehicle kinematics
[7]–[10].

Especially, VO using a single camera, monocular VO
(MVO), is an attractive solution for automobile navigation due
to its minimal setting. Furthermore, because one or more cam-
eras can be easily found in most vehicles as forms of driving
assistant systems and user-mounted dashboard cameras, the
MVO implementation targeted for mobile vehicles is highly
valuable.

However, due to the monocular projective nature, absolute
metric information disappears from an image and MVO can
only yield up-to-scale translation motion, which makes the
MVO-only setup more challenging without additional metric
measurements. This is called the scale ambiguity problem
[11]. Although the scale ambiguity often means scale drifts
over time, we specifically use it only to denote absolute scale
vanishing in this paper.

A common approach to recover the scale in the MVO is to
integrate additional sensors providing metric information such
as inertial measurements from IMU [5], [12], low-resolution
time-of-flight range sensors [13], and a single and multiple
distance meters settings [14]. Although utilization of additional
sensors can improve the performance, the need for the sensors
and precise extrinsic calibration among them might not be
affordable for arbitrary settings.

For the ground vehicle settings, a popular approach is to
utilize the consistent height of the camera rigidly attached to
the vehicle and planar ground observations with a plenty of
image features [15]–[22]. They show successful performance
when planar features are available abundantly. Although they
target the ground vehicle applications, the vehicle kinematics
is not fully exploited but implicitly considered as a planar and
level traverse of the camera. Furthermore, in most research, the
relative pose between the camera and the vehicle is commonly
assumed to be an identity, which is not always true in vehicular
settings.

In this paper, we introduce a scale-aware monocular VO
system utilizing a vehicle kinematic motion model. Different
from the previous scale-aware MVO works [15]–[22], we
explicitly use the vehicle kinematics to model the monocular
camera motions. To exactly obtain the fixed relative pose of the
camera and the vehicle, we develop a self-contained extrinsic
pose calibration method between the camera and the vehicle.
Then, we design a scale observer that estimates the absolute
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Fig. 1. Block diagram of the proposed scale-aware monocular visual odometry and extrinsic calibration system

translation scale from the geometric constraint of the frame-
to-frame camera turning motion. To propagate the observed
absolute scale on turning regions, we propose a method to
recover the unobserved scale between turns.

In the following, we review related works, and list our main
contributions compared to them.

A. Related Works

We survey monocular VO methods with scale awareness,
and categorize them into three types according to methods
to obtain absolute scale information: 1) additional sensors, 2)
environmental properties, and 3) learning-based approach.

1) Additional sensors: Additional sensors are frequently
used to observe metric scale of the motion estimation. For
VO, multiple cameras [3], [4], [5] with known relative pose
and baselines are widely used to triangulate landmarks in 3-D
space and estimate the metric camera translation motion. For
more compact settings, monocular visual-inertial odometry (V-
IO) is proposed [6], [12]. By double-integrating acceleration
measurements, the metric translation change of the IMU is
incorporated into the MVO motion optimization problem.

Other works utilize different sensor modalities that provide
metric information to the MVO framework. In [13], [14],
multiple 1-D point laser sensors are used to obtain the metric
distance of the center pixel of the camera and to recover the
trajectory scale.

As mentioned before, two hurdles to implement this type of
methods exist; the calibration among various sensors with dif-
ferent modalities is nontrivial, and some sensor combinations
might not be easily available.

2) Environmental properties: Most monocular scale-aware
VO methods [15]–[22] utilize two environmental conditions:
planar ground observations and constant camera height. An
early work [15] extracts point features on road from a fixed
quadrilateral image region to estimate the planar homography
transform between frames. By decomposing the homography
matrix, they compute the camera height from the plane and
adjust the scale of camera motion using consistent camera
height assumption.

The strategy using the planar homography is still popular in
recent studies, and several variations are proposed to extract
planar information accurately and stably; [16], [17] combine
sparse features and direct illumination on the ground plane to
estimate the homography matrix, and [18] and [22] geomet-
rically model the plane regions by the Delaunay triangulation

with point feature nodes and stably prune out outliers. In [20]
and [21], robust plane fitting is proposed. In recent work [19],
road regions are segmented pixel-wise by deep learning to
robustly find planar features.

These methods show the stable and accurate scale main-
taining performance in planar feature-abundant environments,
however, they may become infeasible in some regions with
no texture on ground planes. Furthermore, most research
assume known attachment pose of a vehicle-mounted camera,
or assume zero-pitch camera pose.

3) Learning-based approaches: In recent years, deep learn-
ing has undoubtedly achieved considerable advances in com-
puter vision, and many deep applications are derived from
several influential works such as [23], [24]. Following the
trend, a number of MVO attempts using deep learning are also
introduced [25]–[30]. In [25], an end-to-end MVO network is
proposed by directly training conventional VO results using
deep recurrent convolutional neural network (RCNN), and
other methods [26]–[29], [31]–[33] utilize deep depth predic-
tion in training steps. By using the depth, these methods can
provide consistently scaled translation motion over sequences,
however, still yield up-to-scale estimation only due to the
monocular nature. To fill the metric gap, deep monocular V-IO
(MV-IO) methods [31]–[33] are emerging recently.

It is noted that most existing learning-based methods require
more data than monocular images, such as stereo images [27]
or 3-D LiDAR points [28], in the training step of MVO
or inference step of MV-IO. Even more, machine learning
methods still suffer from generalization gap between training
and test sets, and their performance might degrade in unseen
conditions.

According to our survey, we found that there are few
approaches operating independently of the additional sensors
and assumptions on surrounding environments and landmark
distributions. Especially, the MVO methods with the scale
recovery for vehicles mainly focus on indirectly using vehicle
characteristics, such as planar ground features and consistent
height of the camera. In several cases, the camera-vehicle
relative pose is also assumed to be known.

In this paper, we propose the scale-aware MVO framework
that explicitly utilizes the vehicle kinematic constraints on
the camera motion. For completeness of the formulation, we
also introduce a self-contained camera-vehicle extrinsic pose
calibration method.
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B. Contributions and Outline

Compared to the related works, we list major contributions
of the paper as follows:

• We can estimate arbitrarily attached camera pose to
the vehicle by proposing a self-contained camera-vehicle
extrinsic pose calibration method using camera motion
constrained by vehicle kinematics.

• By utilizing local geometry of the constrained camera
motion, we design a new scale observation method when
the vehicle turns. We also theoretically analyze the scale
observer to determine stable states for observing the scale.

• Unobserved scale between turning regions can be esti-
mated by the absolute scale using metric scale on the
turning motion.

Note that, different from the scale-aware MVO using the
planar ground features [15]–[22], our method has an additional
advantage of no need for assumption on the uncontrollable
external environment such as ground feature distributions.

Our algorithm is illustrated in Fig. 1, and the rest of the pa-
per is structured as follows: Section II describes preliminaries
including notation rules, vehicle motion model, visual process-
ing and data structures required for our method. In Section III,
we explain a camera-vehicle extrinsic pose calibration method
to estimate arbitrarily installed monocular camera pose with
respect to the vehicle. In Section IV, we propose an absolute
scale observer by the kinematically constrained camera motion
model in turning motion, and the absolute scale recovery
method between turning regions is proposed in Section IV-C.
In Section V, we present in-depth analysis on the proposed
modules, and demonstrate comparable performance of our
method on publicly available datasets. Finally, we highlight
the effectiveness of our method especially in indoor driving
circumstances by experiments on author-collected indoor driv-
ing datasets. Our datasets and related parameters are publicly
shared as rosbag files at https://chkim.net/scalemvo.

II. PRELIMINARIES

Before detailed description, we define notations and the 3-D
geometry between a monocular camera and landmarks. Then,
we derive the monocular camera motion model constrained by
the vehicle kinematics. The front-end visual processing and
data structures for our system will be explained at the end of
this section.

A. Notation Rules and 3-D Geometry of a Camera

Throughout the paper, we express column vectors with bold
lowercase letters, and matrices are in bold capital letters. The
exception is for using X to denote a 3-D point. Let Xi ∈ R3

be the i-th 3-D point represented in the world frame {W}, and
Xij ∈ R3 be the expression of Xi in the j-th camera frame
{Cj}. The 3-D rotation matrix and translation vector from
{Ca} to {Cb} are described as RCa

Cb
∈ SO(3) and tCa

Cb
∈ R3,

respectively, and the corresponding rigid body transform is
defined as TCa

Cb
:=
[
RCa

Cb
, tCa

Cb
;0⊤

3 , 1
]
∈ SE (3) where 03 is

a 3-D zero vector. The projection relationship of Xi to the
corresponding 2-D pixel pij ∈ R2 on the pixel plane of j-th

𝐿
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Fig. 2. Illustration of the vehicle kinematics This figure shows the
Ackermann steering geometry of the vehicle between {V0} and {V1}. Red
and blue arrows denote x- and z-axes of each frame. By the right-hand rule,
the y-axis directs to the paper. The shaded frames are auxiliary camera frames.

camera frame can be computed by πj (Xi) ∈ R2 by defining
a function πj (·) : R3 7→ R2 projecting a 3-D point expressed
in {W} onto the pixel plane of {Cj}. For simplicity, we use
abbreviated notations c (·), s (·), t (·) throughout the paper to
denote cosine, sine, and tangent functions, respectively.

B. Camera Motion Constrained by Vehicle Kinematics

As depicted in Fig. 2, the chassis part of a four-wheeled
automotive vehicle is designed for all wheels to experience
concentric circular motions. This kinematics, called the Ack-
ermann steering geometry [34], enforces locally planar and
circular motion.

As shown in Fig. 2, we consider that the vehicle frame {V }
is on the rear axle of the vehicle, and the z- and x-axes of {V }
head forward and right of the vehicle, respectively. Using this,
the vehicle motion from {Vj−1} to {Vj} can be represented as

R
Vj−1

Vj
=

 c(ψj) 0 s(ψj)
0 1 0

−s(ψj) 0 c(ψj)

 , tVj−1

Vj
=

ρjs(γj)0
ρjc(γj)

 , (1)

where ψj , ρj ∈ R are turning angle and distance between
centers of {Vj−1} to {Vj}, respectively, and γj := ψj/2.

The motion of the camera rigidly attached to the vehicle can
be modeled by the vehicle kinematics. We consider that the
original camera frame {C} is at the distant L ∈ R from the
origin of {V } along the z-axis of {V }, and the camera pose is
Q ∈ SO(3). We additionally define an auxiliary camera frame
{A} sharing the origin of {C} but having the same pose with
{V }, i.e., RV

A = I3 ∈ SO(3). The translation vector between
{V } and {A} is tVA = [0, 0, L]

⊤ where I3 is a 3-D identity
matrix.

The relative motion between {Aj−1} and {Aj} T
Aj−1

Aj
∈

SE(3) can be represented as

T
Aj−1

Aj
= TA

V T
Vj−1

Vj
TV

A , (2)
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where rotation and translation parts of TAj−1

Aj
are written as

R
Aj−1

Aj
=

 c(ψj) 0 s(ψj)
0 1 0

−s(ψj) 0 c(ψj)

, tAj−1

Aj
=

 ρjs(γj)+Ls(ψj)
0

ρjc(γj)−L+Lc(ψj)

. (3)

Finally, the constrained camera motion T
Cj−1

Cj
∈ SE(3) can

be written as

T
Cj−1

Cj
=TC

AT
Aj−1

Aj
TA

C=
[
Q⊤R

Aj−1

Aj
Q, Q⊤t

Aj−1

Aj
; 0⊤

3 , 1
]

(4)

where TA
C =

[
Q,03;03

⊤, 1
]
∈ SE(3).

The above derivation is analogous to the vehicular MVO
research [7] incorporating the vehicle kinematics to make the
1-point MVO. However, [7] used two major assumptions: zero
displacement L = 0 and ideal camera pose Q = I3, which
might be invalid in general camera settings. In fact, the author
of [7] reported that the two assumptions are valid only when
the steering angle is sufficiently small. In the large steering
motion, L is no longer negligible because of increasing terms
multiplied by L in t

Aj−1

Aj
.

In this paper, to deal with the general camera installation, we
propose the camera-vehicle extrinsic pose calibration method
in Section III. In addition, we consider the nonzero L to realize
the scale-aware MVO, which will be detailed in Section IV.

C. Visual Processing Front-end and Data Structures

Our method utilizes associations between visual landmark
correspondences and camera frames. We list requirements for
our scale awareness module.

Each visual landmark should store:
• 2-D pixel tracking history over images
• Address of frames where the landmark was seen
• 3-D point of the landmark represented in {W}
Each image frame should include:
• Address of landmarks observed in the frame
• 6-DoF camera motion from {W}
For the visual landmark, we use the ORB feature [35]. Our

method selects keyframes among the image frames to reduce
the problem size and obtain the sufficiently large turning
motion between frames. We implement our VO module by
following the successful MVO method, ORB-SLAM2 [1].

III. CAMERA-VEHICLE EXTRINSIC POSE CALIBRATION

The exact extrinsic pose Q of vehicle-installed cameras,
such as driving assistance cameras and custom dashcams,
are not generally available. In this section, we introduce the
two-step calibration method to estimate the camera-vehicle
extrinsic pose by only using motion of the camera installed
to the vehicle.

A. Problem Formulation

The kinematic constraint of the vehicle is generated by
the chassis part. In normal driving conditions, the vehicle
upper body can be considered to experience the same rigid
body motion with the chassis. In this case, the motion of the

camera attached to the body part can be also expressed by the
constrained motion model (4).

Based on the above description, desired conditions of the
calibration problem for the j-th frame are written as

R̂j = Q⊤RjQ, t̂j = Q⊤tj , (5)

where we define simplified notations R̂j := R
Cj−1

Cj
, Rj :=

R
Aj−1

Aj
∈ SO(3) and t̂j := t

Cj−1

Cj
, tj := t

Aj−1

Aj
∈ R3, respec-

tively. Note that unconstrained camera motion R̂j and t̂j can
be computed by the MVO algorithm.

As (3) and (4), right-hand sides of two equations in (5) are
functions of qs, ρj , and ψj where qs ∈ R4 is a unit quaternion
of Q. Let us define a parameter vector with unknowns as

Θ =
[
qs

⊤, ρ1, · · · , ρN , ψ1, · · · , ψN

]⊤ ∈ R2N+4. (6)

By aggregating N poses, an optimization problem with
respect to Θ can be formulated as

argmin
Θ

N∑
j=1

∥R̂j −Q⊤RjQ∥2F + ∥t̂j −Q⊤tj∥2F , (7)

where ∥·∥F is the Frobenius norm.
Note that the problem in (7) is a large-scale nonlinear batch

optimization problem. Without proper initial parameter values,
it could fall into wrong minima, or diverge. To prevent this,
we first calculate initial guess of each part of Θ separately by
linear algebraic approaches.

B. Linear Initialization of ψj and Q

First, we explain how to extract initial guesses of turning
angles ψj from the unconstrained camera rotations R̂j regard-
less of the unknown Q. Then, using the initial ψj , we propose
a linear algebraic approach to calculate the initial value of qs.

1) Extracting ψj from the unconstrained rotation R̂j:
In the rotation part of (5), R̂j and Rj are similar matrices
by Q. By the property of similar matrices, the two matrices
should have the same eigenvalues regardless of a choice of
Q ∈ SO(3).

From the definition of Rj in (3), three eigenvalues of Rj

are one and c(ψj) ± i s(ψj) where i is the unit imaginary
number. They are also eigenvalues of R̂j due to the eigen-
value invariance of the similar matrices. Because the sum of
eigenvalues is equal to the trace of the matrix, we can derive
an equation related to ψj as

trace R̂j = 2 c(ψj) + 1. (8)

From (8), we can only obtain the magnitude |ψj |. To
determine its sign, we employ tj . Due to the Ackermann
geometry, t̂j is locally constrained to the x-z plane of {A}.

When the steering motion is larger than the roll and pitch
motion, we can consider that a vector rotation t̂′j := R̂j t̂j ∈
R3 is mainly governed by the steering motion. Then, from the
directional difference between t̂′j and t̂j , we can compute the
direction of rotation of the vehicle.

In sum, the initial guess of ψj can be calculated as a closed
form with a 3-D cross product operator × as

ψj = sign
(
t̂j × t̂′j

)
·

∣∣∣∣∣arccos
(

trace R̂j − 1

2

)∣∣∣∣∣ . (9)
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2) Linear solution of Q in a quaternion representation:
Using the initial guesses ψj , Q can be estimated by solving
the least squares problem in quaternion space. Let q̂j , qj ∈ R4

be unit quaternions of R̂j and Rj , respectively. In this paper,
we follow the Hamilton quaternion convention with the right-
handed algebra. We define the pure quaternion of the vector
v ∈ R3 with zero at the first element as v̆ :=

[
0, v⊤]⊤ ∈

R4. Then, (5) can be rewritten as

QR̂j = RjQ→ qs ⊗ q̂j = qj ⊗ qs

Qt̂j = tj → qs ⊗ ˘̂tj ⊗ q∗
s = t̆j ,

(10)

where ⊗ means the quaternion product operator, and q∗ ∈
R4 denotes conjugate of a quaternion q. Because the MVO
can only provide up-to-scale translation motion, we use unit
vectors ûj and uj corresponding to t̂j and tj , respectively.

The quaternion equations in (10) can be transformed into
matrix forms,

Ωr (q̂i)qs = Ωl (qj)qs

Ωr

(
˘̂ui

)
qs = Ωl (ŭi)qs,

(11)

where matrix forms of left and right quaternion products
Ωl (q), Ωr (q) : R4 7→ R4×4 are denoted as

Ωl (q)=

[
q0 −n⊤

n q0I3+[n]×

]
,Ωr (q)=

[
q0 −n⊤

n q0I3−[n]×

]
(12)

where q :=
[
q0,n

⊤]⊤ with a scalar q0 and n∈R3, and [n]×∈
R3×3 is a matrix satisfying [n]×v=n× v with v∈R3.

Note that, in this initialization step, we temporally assume
L = 0 to neglect unknown values ρj of tj . Then, the simplified
form of uj becomes a function of only ψj

uj=
tj
∥tj∥2

=

 ρjs(γj)+Ls(ψj)
0

ρjc(γj)−L+Lc(ψj)

/∥tj∥2≈
s(γj)0
c(γj)

. (13)

ρj values will be re-considered in a refinement step in the
following subsection.

By concatenating N equations, a least squares problem to
estimate qs with a matrix M ∈ R8N×4 can be formulated as

Mqs =



Ωr (q̂1)− Ωl (q1)

Ωr

(
˘̂u1

)
− Ωl (ŭ1)

...
Ωr (q̂N )− Ωl (qN )

Ωr

(
˘̂uN

)
− Ωl (ŭN )


qs = 08N . (14)

A solution qs can be computed by the right nullspace of M.
Using the singular value decomposition to M, we can obtain
the solution as the right singular vector corresponding to the
smallest singular value.

In Fig. 3, the estimated qs converges to the truth value
at the first turning motion, and the solution becomes stable
with the dashed line after another turn. Note that the nullspace
problem in (14) might yield a wrong solution with duplicated
singular values for insufficiently small turning motion. We can
estimate the uniqueness of the solution by checking whether
the smallest two singular values differ or not. As seen in Fig.
3, the second smallest singular value becomes distinguishable
from the smallest one after the first sufficient turning motion.
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Fig. 3. Singular value history of the linear initialization of qs In the first
graph, turning angles are obtained by the ground truth poses to the first 500
frames of 00 dataset [36]. σ1 and σ2 are the two smallest singular values
of M, respectively, and their histories are drawn according to the number of
stacked poses in the middle graph. The third graph exhibits histories of the
estimated Euler angles of Q. Two vertical lines denote ends of each turning
motion, and horizontal dashed lines are true values of Euler angles of Q.
We intentionally rotate the camera pose with Euler angles of {12, 19,−1}
degrees to simulate an arbitrary pose Q.

C. Full Refinement of the Initial Guesses

In the previous linear step, we assume L = 0 for simple
derivations. In this step, we re-consider the nonzero L to
incorporate effects of s(ψj) and c(ψj)−1 terms of tj . Without
loss of generality, we use L = 1. Because we cannot obtain the
scale of tj from the MVO, we use the normalized translation
vector tj/ ∥tj∥2 in the full refinement problem. Then, we
modify the problem in (7) as

argmin
Θ

N∑
j=1

wH

(
∥R̂j −Q⊤RjQ∥2F
+ ∥ (Qûj)

⊤
tj/ ∥tj∥2 − 1∥22

)
subject to ∥qs∥2 = 1.

(15)

As seen in (15), the original translation term in (7) is mod-
ified into the difference of unit directions of two translation
representations to delete unknown magnitude of the estimated
monocular translation motion.

The real-world vehicle motion could slightly deviate from
the planar motion model. To suppress bad effects of the off-
planar motions on the optimization process, we employ the
Huber norm wH (r) with the threshold value rth ∈ R+ as

wH (r) =

{
rth/|r| if |r| > rth
1 otherwise , (16)

where rth is set to 60 % value of the residuals, and recalculated
for each optimization step.

The above nonlinear optimization problem can be efficiently
solved by a nonlinear programming solver, CasADi [37]. Note
that the resulting scale estimations ρj are proportional to the
L. If the exact metric L can be known in advance, the absolute
value of ρj can be estimated. Reversely, the metric L can be
recovered using metric motion measurements from additional
sensors, such as wheel odometer and global positioning system
(GPS). Anyway, any choice of real positive L does not affect
estimating Q.

IV. ABSOLUTE SCALE RECOVERY BETWEEN TURNING
REGIONS

In this section, we introduce a method to observe the
absolute metric scale of the MVO motion, and a strategy
to detect turning frame regions that can provide absolute
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Fig. 4. Two triangles formed by the turn of the vehicle and relationship
between ψ and θ (a) ψj is the turn angle of the vehicle, and θj is the
subtended angle between the z-axis of {Aj−1} and the rotated unit translation
vector ũj . ρj is the distance between centers of {Vj−1} and {Vj}, and sα,j

is the scale of the monocular translation motion which is our objective to
estimate. (b) The relationship between ψ and θ is plotted with respect to the
value of ρj/L.

scale observations stably. Then, we propose an absolute scale
recovery (ASR) method scaling translation motion and 3-D
points between turns by using the observed absolute scale of
the turn regions.

A. Observing Absolute Scale via Kinematic Geometry

We detail how to observe the absolute scale sα,j of the
monocular camera translation motion tj at the vehicle turning.
When the vehicle turns to angle of ψj , we can draw two
triangles by joining origins of vehicle body frames and camera
frames as depicted in Fig. 4(a). For the red isosceles triangle
△ACA′, we calculate lengths of AC and A′C as

AC = A′C =
ρj

2 c(γj)
. (17)

By using AC and A′C, each side of the blue triangle
△BCD can be calculated with AB = A′D = L as

BC =
ρj

2 c(γj)
− L, CD =

ρj
2 c(γj)

+ L. (18)

As seen in Fig. 4(a), our objective sα,j is a side of the blue
triangle. If we know angles ψj , θj , and γj , we can calculate
sα,j by utilizing the sine rule on the blue triangle. Because
the initial value of ψj can be known by (9) and γj = 1/2ψj ,
we can compute the unknown value of the angle θj that is
the subtended angle between the z-axis of {Aj−1} and a unit
vector ũj := Qûj ∈ R3 rotated to the auxiliary frame. By
defining kV ∈ R3 as the unit vector of the z-axis of {V }, θj
is calculated as

θj = arctan
{
(kV ×ũj)/

(
kV

⊤ũj

)}
. (19)

Applying the sine rule on the blue triangle, we finally obtain
equality,

ρj

2 c(γj)
− L

s(ψj − θj)
=

ρj

2 c(γj)
+ L

s(θj)
=

sα,j
s(ψj)

. (20)

From the first equality in (20), the temporal distance ρj of the
vehicle is expressed as a function of ψj and θj up to L,

ρj
L

= 2 c(γj)
s(θj) + s(ψj − θj)
s(θj)− s(ψj − θj)

. (21)
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Fig. 5. Factor graph of a landmark and related keyframes for the absolute
scale recovery An i-th landmark is connected to turning and non-turning
keyframes by 2-D pixel tracks. We use 1’s index rule in this illustration.
The red arrow means a constrained relative translation motion in the turning
regions. All translation motion of the keyframes are represented with respect
to the world frame.

Then, the scale observer can be derived by substituting (21)
to the second equality of (20) as

sα,j
L

=
2 s(ψj)

s(θj)− s(ψj − θj)
. (22)

In Fig. 4(b), the graph of ψj and θj with respect to various
ρj/L settings is depicted. θj can be derived from (21) as

θj = arctan

(
ρjt(γj) + 2L s(γj)

ρj − 2L s(γj) t(γj)

)
, (23)

where θj is a function of ψj and ρj , which allows us to treat
sα,j as a function of ψj and θj .

As seen in the figure, θj is approximately proportional to
ψj for all ρj/L. We found that the ratio θj/ψj asymptotically
converges to 0.5 when ρj goes to infinite, which guarantees
a nonzero positive denominator of (22) by assuming |ψj | =
|2γj | < π. Because general vehicles cannot steer over 90
degrees in a short period like the camera image acquisition
interval, the turning angle assumption is valid in most cases.

The scale observer in (22) becomes singular when ψj

goes to zero. To discuss this problem, in Section V-A, we
will investigate the relationship among ψj , θj , and sα,j , and
analyze which condition is desirable to stably observe the scale
by sensitivity analysis on the scale observer.

B. Detecting Turning Regions

As denoted in the previous subsection, the scale observer
(22) becomes singular for small turning angle ψj . To obtain
the reliable observations, we detect keyframes with sufficiently
large turning motion.

Let F be an index set of all keyframes between turning
regions. F consists of two subsets, Ft and Fu, which are
index sets of keyframes on turning and non-turning regions,
respectively. We additionally separate Ft into two index sets of
previous and current turning regions, Ftp and Ftc, respectively.
Each index set is depicted as a shaded region with dashed
boundary in Fig. 5.

Once |ψj | becomes larger than a threshold angle ψth, the j-
th keyframe is regarded as a turning candidate frame, and we



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

Algorithm 1 Detecting a New Turning Region
1: iop: an operating indicator. Default is True.
2: n: a counter value. Default is zero.
3: for each incoming frame, current j -th frame do
4: Do monocular VO
5: |ψj | ← a steering angle calculated by (9)
6: if |ψj | ≥ ψth then
7: if !iop then
8: iop ← True
9: end if

10: Ftc ← Ftc ∪ j; ++n;
11: else
12: iop ← False; n← 0;
13: if n ≥ nth then
14: Ftp ← Ftc; Ftc ← ∅;
15: else
16: Fu ← Fu ∪ Ftc; Ftc ← ∅;
17: end if
18: end if
19: end for

count how many candidates follow sequentially. If the number
of the candidates exceeds a threshold count value nth, we find
a new turning region Ftc from the j-th keyframe to a keyframe
whose next keyframe is no longer the candidate frame. If not,
all the candidates from the j-th keyframe are passed to the
non-turning region index set Fu. This procedure is written in
Algorithm 1.

C. Recovering Unknown Scale by Nonlinear Programming
with Equality Constraints

In this subsection, we introduce the ASR module. Using the
observed scale values on the turning keyframes Ft, we recover
unknown scale values of the monocular translation motion and
3-D landmark points between the turning regions Fu.

Fig. 5 illustrates a factor graph of the i-th landmark and
its related keyframes. The landmark is associated to the
keyframes by 2-D pixel tracks pij ∈ R2. The pixel repro-
jection error rij induced by Xi and {Cj} is written as

rij := πj (Xi)− pij ∈ R2. (24)

By aggregating all error vectors generated by N keyframes
and M landmarks, we define the residual vector r as

r :=
[
o11r11

⊤, · · · , oNMrNM
⊤]⊤ ∈ R2MN , (25)

where an indicator oij becomes true if the i-th point is seen
in the j-th keyframe, otherwise false.

We define the parameter vector ζ to be scaled as

ζ :=
[
tW2

⊤
,· · ·, tWN

⊤
,X1

⊤,· · ·,XM
⊤
]⊤
∈ RP , (26)

where P := 3 (N − 1) + 3M and we fix the first keyframe
{C1} to avoid the gauge freedom. Then, we can formulate a
reprojection error minimization problem with respect to ζ as

argmin
ζ

r (ζ)
⊤
r (ζ) , (27)
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Fig. 6. Noise sensitivities of the scale observer (a) Noise sensitivity with
respect to ψj , (b) noise sensitivity with respect to θj . The curves are color-
coded according to ρj/L.

where r (ζ) ∈ R2MN is the residual vector as a function of ζ.
The optimization problem in (27) is a popular nonlin-

ear programming problem in computer vision, called bundle
adjustment (BA) [11]. Different from the original BA, we
additionally incorporate the observed scale values into the
problem to recover the unobserved scale between turns.

Conceptually, the scale of the turning keyframes can be
propagated to the associated non-turning keyframes through
the 2-D pixel tracks. Like the red arrows depicted in Fig. 5,
the observed scale on Ft can be used to constrain the relative
translation motion ∆tj := tWCj

−tWCj−1
∈ R3. If the cardinality

of Ft is K and the k-th element of Ft is Ft (k), the k-th scale
constraint can be written as an equality constraint

gk (ζ, sα) = ∆tFt(k)
⊤∆tFt(k) − s

2
α,Ft(k)

= 0, (28)

where sα :=
[
sα,Ft(1), · · · , sα,Ft(K)

]⊤ ∈ RK .
Defining the Lagrangian L (ζ,λ) := r (ζ)

⊤
r (ζ) +

λ⊤g (ζ, sα) ∈ R with the Lagrange multiplier vector λ ∈ RK ,
we finally set up a minimization problem as

argmin
ζ,λ

L (ζ,λ) subject to g (ζ, sα) = 0K , (29)

where an equality constraint vector g is defined as

g (ζ, sα) := [g1 (ζ, sα), · · · , gK (ζ, sα)]
⊤
: RP 7→ RK . (30)

The above nonlinear programming with equality constraints
can be solved by sequential quadratic programming (SQP)
[38]. Whenever a new turning region is detected, we operate
the ASR module, and repeat this procedure for overall image
sequences.

V. EXPERIMENTAL RESULTS

In this section, we analyze the proposed three modules: the
scale observer, the camera-vehicle extrinsic calibration, and the
ASR module. Then, we evaluate the overall MVO performance
of our method on publicly available outdoor driving datasets,
i.e. KITTI odometry datasets [36]. At the end, we demonstrate
promising real-world applicability of the proposed method
on author-collected indoor driving datasets acquired in two
different underground parking lots with multiple floors.

A. Noise Sensitivity Analysis of the Scale Observer

First, we perform in-depth analysis on the scale observer.
Noise in ψj and θj estimation is inevitable due to imperfect
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camera motion estimation and off-planar vehicle vibration. In
Section IV-A, (22) is ill-defined near ψj = θj = 0, which
implies high noise-sensitivity around the zero. To address this
problem, we analyze the noise sensitivity of the scale observer
sα,j with respect to ψj and θj with various ρj/L settings.
Without loss of generality, we consider the normalized scale
s′α,j := sα,j/L during this analysis.

We differentiate s′α,j with respect to the two parameters, ψj

and θj , and the resulting sensitivity equations are as below:

∂s′α,j
∂ψj

=
−s(θj)

c(ψj−2θj)−1
,
∂s′α,j
∂θj

=
2 (s(ψj−θj) + s(θj))

c(ψj−2θj)−1
.

(31)
Using the above two derivatives, we draw multiple graphs

by changing ρj/L in Figs. 6(a)–(b). According to the graphs,
the scale observer becomes less sensitive to noise in the
angle estimation of ψj and θj when the turning angle ψj is
large. Both sensitivities show similar tendency because θj is
governed by ψj as Fig. 4(b).

When increasing the relative vehicle speed ρj/L, the both
noise sensitivities also increase as seen in Fig. 6(a). From these
tendencies, we can conclude that we can obtain more stable
scale observations in apparently large turning motion at low
driving speeds.

As seen in Fig. 6(b), the scale observer is slightly more
sensitive to error in ψj than θj . In other words, accuracy of
the turning angle estimation is more crucial for accurate scale
observation than the translation vector estimation. Fortunately,
we found that MVO yields sufficiently accurate turning angle
ψj in average error less than 0.1 degrees in the KITTI datasets
[36]. For ψj = 5 degrees and ρj = 0.4 m with L = 1 m, the
0.1 degree error corresponds to about 0.02 m scale error which
is only 1/20 of the scale observation error.

As mentioned before, both noise sensitivities are governed
by ρj/L. Without changing the metric distance ρj between
{Vj−1} and {Vj}, the term ρj/L can be decreased by increas-
ing L. In general, the camera on the vehicle is mounted around
the windshield in order to look forward, and such setup can
guarantee sufficiently large L > 1 m, which implies that our
method is suitable for general automobile environments.

In Fig. 7(a), we plot the history of ψj and ρj/L estimated by
our MVO from the author-collected parking-lot datasets which
will be detailed in Section V-C2. As seen in the graph, during
turns, ρj/L is mostly in the range [0.2, 0.4], and the turning
angle is over 3 degrees in average. Note that ρj/L ∈ [0.2, 0.4]
corresponds to the vehicle speed 20–30 km/h (12–19 mi/h)
with L = 1 m for 10 Hz image acquisition frequency. Based
on these motion characteristics of the parking-lot datasets,
we evaluate the noise tolerance of the scale observer. we
consider two situations: ∆ψj = ∆θj = 0.05 degrees and
∆ψj =∆θj =0.1 degrees where ∆ψj ,∆θj ∈ R denote abso-
lute values of the estimation error on ψj and θj , respectively.
The error values are determined based on the average 0.1
degrees rotation error in the KITTI datasets mentioned before.
We calculate the error of the scale estimation, ∆s′α,j ∈ R, with
respect to ∆ψj and ∆θj as

∆s′α,j(∆ψj ,∆θj)≈
∣∣∣∣∂s′α,j∂ψj

∣∣∣∣∆ψj +

∣∣∣∣∂s′α,j∂θj

∣∣∣∣∆θj . (32)
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Fig. 7. Turn angle ψj , relative distance ρj/L, and the error over the scale
on the author-collected parking lots driving datasets (a) This graph shows
the time history of ψj and ρj/L on bldg_39 of the author-collected datasets
to be detailed in Section V-C2. The red dashed line means the average value
during turns. (b) The scale estimation error ratio when the angle estimation
error is ∆ψj =∆θj = 0.05 deg. (c) The scale estimation error ratio when
the angle estimation error is ∆ψj =∆θj = 0.1 deg. The dark blue region
corresponds to ψj ∈ [3, 5] degrees and ρj/L∈ [0.2, 0.4].
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Fig. 8. Trajectory and 3-D points of the synthetic dataset, and the turning
region detection results (a) The trajectory is 1.2 km long with 3, 500 data
points and nine turning spots. (b) We simulate the noisy and drifted MVO
estimation by augmenting rotation and translation error to the true in black
trajectory. The blue boxes are the detected turning regions by our method.

We compute the percentage of the error over the normalized
scale, ∆s′α,j/s

′
α,j × 100 [%]. In Figs. 7(b)–(c), the dark blue

region is our region of interest ψj ∈ [3, 5] degrees and ρj/L∈
[0.2, 0.4]. As seen in Figs. 7(b)–(c), the error percentage in the
real-world situation such as parking lots can be quite small,
about 2.5 % in average and 5.5 % in the worst case.

From this, our method will be effective for common indoor
driving situations. In Section V-C2, we will verify the effec-
tiveness of our method on the author-collected driving datasets
obtained in multi-floor underground parking lots.

B. Evaluations on Synthetic Data

We extensively evaluate the performance of the camera-
vehicle extrinsic calibration and the ASR module through
Monte-Carlo simulation on a synthetic driving dataset. The
shape of the synthetic dataset is depicted in Fig. 8. This dataset
has 1.2 km trajectory with several 90-degree turning motions,
and about 4, 000 points scattered along the trajectory.
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Fig. 9. Results of the camera-vehicle extrinsic calibration on the synthetic
dataset (a) results of the linear method only, (b) results after the full
refinement. The boxplots are colored according to each noise level. The
horizontal lines in the each boxplot denote mean values. The gray dashed
lines denote each truth value, and each box means 1-sigma regions. The black
vertical lines mean ranges of the resulting values.

The data association of 2-D pixel tracks and keyframes is
established by projecting the 3-D points to each camera frame
with a field of view limit of 100 m. For each Monte-Carlo
simulation, we change the distribution of the 3-D points and
their 2-D pixel projection error. For realistic simulation, we
consider several camera rotation pose error settings with a
different noise level.

1) Camera-Vehicle Extrinsic Calibration Results: We set
the camera intrinsic parameter same as the sensor suite of
the first data sequence 00 of the KITTI odometry datasets.
We consider an artificial monocular camera with L = 1.0 m
displacement from the rear axle, and the camera installation
pose Q is set by {5, 15, −10} degrees z-y-x Euler angles.

We evaluate the accuracy of the proposed camera-vehicle
pose calibration method by changing noise in the camera
rotation motion estimation with 0.05, 0.2, 0.5, and 1.0-degree
random noise for each frame. For each noise level, we repeat
total 100 simulations for meaningful statistics.

The simulation results are plotted in Figs. 9(a)–(b). We
consider two settings of the calibration method: (a) linear
initialization only and (b) full refinement. As seen in Fig.
9(a), under the linear initialization, the estimation accuracy
rapidly degrades when the noise level increases. Especially,
the pitch angle estimation corresponding to the rotation around
the y-axis of {A} shows large offset errors for all noise
conditions. We found that the offset error is caused by the
deviated direction vector uj in (13) by assuming L = 0. If we
compensate the true L and ρj values in the linear initialization
step, no offset error occurs on the pitch angle.

Contrary to the linear-only setting, the full refinement
module yields the unbiased estimation regardless of the noise
level because we explicitly optimize ρj with the non-zero
L in the refinement step. Furthermore, thanks to the noise
suppression effect of the Huber norm, the standard deviation
of the estimated Euler angles is decreased to 0.5 degrees
for the 1-degree noise condition. As mentioned in Fig. 3,
only one turning motion is sufficient to excite the extrinsic
calibration module. Considering all of these, by using the
proposed method, we can stably estimate the accurate camera-
vehicle extrinsic pose with the noisy data from a monocular
camera with one turning region only.

2) Absolute Scale Recovery Results: We evaluate the per-
formance of the ASR module in the synthetic dataset. We
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Fig. 10. Results of the absolute scale recovery on the synthetic dataset
(a) The first graph is about frame-to-frame turning angle, and the second one
shows the scale observation history. The last graph depicts the estimated scale
history after the ASR. Yellow and gray shaded regions express the turning
and non-turning regions, respectively. (b) Trajectories of the raw monocular
odometry and the ASR module with the various camera motion noise settings.

TABLE I
RMSE COMPARISONS OF ANGLES AND SCALE ESTIMATIONS ON THE

SYNTHETIC DATASET

Noise
[px]

ψj

[deg]
θj

[deg]

sα,j

(turn)
[m]

rj
(turn)
[%]

sα,j

(all)
[m]

rj
(all)
[%]

odom. 0.500 - - - 1.098 34.79
0.5 0.110 0.045 0.066 1.01 0.100 3.38
1.0 0.214 0.058 0.067 1.14 0.107 3.56
2.0 0.238 0.062 0.067 1.52 0.145 4.57

consider several pixel tracking error conditions: zero-mean
random error with standard deviation of {0.5, 1.0, 2.0} pixels.
For the rotation motion error, we fix the random error with
standard deviation of 0.5 degrees. We set the turning angle
threshold ψth to 2.5 degrees.

In Fig. 8(b), the simulated odometry trajectory is in red. We
intentionally augment translation drifts to the camera motion
to imitate the monocular scale drift. The scale of the simulated
trajectory is successively decreased by 0.1 % per frame, which
corresponds to the total 33 % scale decreasing at the end.

The detected turning frames are marked with blue squares
on the black true trajectory in Fig. 8. The scale value observed
by (22) is plotted in the second row of Fig. 10(a). In the figure,
the scale of the raw MVO gradually decreases due to the
motion drifts. In contrast, for the apparent turning motion in
the yellow-shaded regions, the observed scale by our method
accurately follows the true value in the black dashed line.
As expected, the scale observations during the small turning
motion takes arbitrary values due to the singularity at the small
angle as denoted in (22).

By utilizing the observed scale on the turns, we conduct the
ASR module to adjust the drifted raw trajectory. The resulting
scale history is depicted in the last row of Fig. 10(a), and
overall trajectories are shown in Fig. 10(b). In the figures, the
words low, mid, and high denote the track noise conditions of
0.5, 1.0, 2.0 pixels, respectively. For all the noise conditions,
the unobserved scale values of the non-turning regions are
successfully recovered, and then, the shapes of the recovered
trajectories follow the ground truth well.

Table I shows the quantitative results for each noise condi-
tion. We calculate the root-mean-square error (RMSE) values
for four variables: steering angle ψj , translation direction angle
θj , absolute error of scale estimation sα,j , and scale error ratio
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TABLE II
QUANTITATIVE COMPARISON ON THE KITTI ODOMETRY DATASETS -

SCALE ESTIMATION ERROR RATIO

Scale estimation
error ratio RMSE [%] Sequence statistics

No. ORB-
mono

ORB-
stereo Ours # of

turns

min.
dist.
[m]

max.
dist.
[m]

avg.
dist.
[m]

*00 45.7 1.7 8.2 28 17.4 447.9 125.5
02 43.0 1.2 13.7 17 27.5 648.9 230.1
03 9.9 1.8 9.9 0 - - -
04 63.4 0.9 63.4 0 - - -

*05 116.0 1.9 5.8 9 53.0 450.8 182.6
06 28.8 1.1 28.8 2 - 443.9 -

*07 71.8 3.0 6.9 6 67.9 146.8 98.3
*08 85.8 2.1 10.5 18 4.8 386.1 160.1
09 31.2 1.4 17.8 4 20.7 579.9 307.7
10 7.8 1.6 7.7 2 - 674.3 -

rj calculated by

rj = |sα,j − sα,j,true| /sα,j,true × 100 [%] , (33)

where sα,j,true ∈ R is the true value for the estimated
scale sα,j . To separately evaluate the performance on turning
and non-turning regions, the two metrics related to the scale
estimation are computed for the turning regions only and the
entire sequences, respectively.

The raw MVO trajectory shows severe scale drifts. But for
turning regions, the absolute scale RMSE error shows 0.067 m
and the scale error ratio is under 2 % for all noise conditions.
In terms of the entire sequence, the absolute scale RMSE error
is about 0.1 m, and the scale error ratio increases to 5 %, which
results from the recovered scale from the long straight regions
making the weak pixel-to-frame connectivity.

From the results, we conclude that the proposed method is
much more effective in the driving condition with frequent
turns and short straight corridors. Those environments can be
often seen in the actual driving situations such as parking
lots. To demonstrate the applicability of our method to the
mentioned situations, we acquire real-world driving image
datasets in multi-floor underground parking lots and apply our
method, as detailed in the following subsection.

C. Implementations on Driving Datasets

First, we exhibit the overall performance of our method
using the publicly available outdoor driving image datasets,
KITTI odometry datasets [36]. To highlight the practical value
of our method, we additionally collect the real-world in-
door driving sequences, called SNU underground parking lots
datasets. We quantitatively evaluate our method by comparing
with the popular visual navigation stack, ORB-SLAM [1],
in monocular and stereo modes. For abbreviations, we call
them ORB-mono and ORB-stereo, respectively. In this imple-
mentation, we use the source code of the latest publication
ORB-SLAM3 [39]. To compare in the manner of VO, we
deactivate the loop-closure and re-localization modules of the
ORB-SLAM.

1) KITTI Odometry Datasets: Sequences of the KITTI
datasets are composed of the time-synchronized 10 Hz stereo
images with the accurate ground-truth pose post-processed by
the OXTS RT 3003 (GPS/IMU) inertial navigation solution.

KITTI_00 KITTI_05

KITTI_07 KITTI_08

Ground truth
ProposedORB-stereo w/o LC
ORB-mono w/o LC

Fig. 11. Representative trajectories of the proposed method on the KITTI
odometry datasets Trajectories are the results on 00, 05, 07, and 08. The
black dashed line denotes the ground truth trajectory, and the green and blue
trajectories are of the ORB-mono and stereo settings, respectively. The results
of our method are depicted in magenta.

TABLE III
QUANTITATIVE COMPARISON ON THE KITTI ODOMETRY DATASETS -
TRANSLATION ERROR THE BOLDFACE MEANS THE BEST PERFORMANCE

EXCEPT FOR THE ORB-STEREO. DASH MEANS FAILURE CASES.
Translation error [%]

No. ORB-
mono

ORB-
stereo

Song
et al.
[16]

Zhou
et al.
[20]

Tian
et al.
[21]

Proposed

*00 20.8 0.70 2.04 2.17 1.41 3.29
02 9.52 0.76 1.50 - 2.18 9.52
03 11.58 0.71 3.37 - 1.79 11.58
04 15.47 0.48 2.19 2.70 1.91 15.47

*05 18.63 0.40 1.43 - 1.61 3.05
06 18.98 0.51 2.09 - 2.03 18.98

*07 13.82 0.50 - - 1.77 3.36
*08 22.06 1.05 2.37 - 1.51 3.11
09 12.76 0.87 1.76 - 1.77 12.76
10 4.86 0.60 2.12 2.09 1.25 4.86

The stereo images are stereo-rectified and have 1240 × 376
pixels resolution. For our method and the ORB-mono, we
use the monocular images obtained by the left grayscale
monocular camera.

According to the sensor setup of the KITTI datasets, we use
L = 0.93 m and Q = I3, and we set ψth = 2◦ by considering
that the average frame-to-frame rotation angle of the dataset
is about 3 degrees.

We evaluate the scale consistency performance of our
method in 11 sequences, 00–10. The sequence 01 is not
used, for which most feature-based VO methods fail [16],
[20], [21]. Table II shows quantitative results of our method,
ORB-mono and stereo modes. As the performance metric, we
compute the scale error ratio RMSE (33) for each sequence.
To compensate the unknown initial scale of the monocular
methods, we provide the scale value of the initial ten frames
from the true trajectory.

As seen in Table II, the scale error ratio RMSE of the ORB-
mono increases over 50 % for several sequences. This scale
drift problem has been reported in the original ORB-SLAM
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Fig. 12. Experimental setting for the author-collected dataset

paper [1]. The ORB-stereo shows stable performance thanks
to the metric length of the stereo baseline.

Our method shows competitive performance to the ORB-
stereo in several sequences marked with ∗ in Table II; how-
ever, in the other sequences, performance degrades similar
to the ORB-mono. To analyze this, we additionally calculate
statistics of each sequence in the table: the number of turns,
minimum, maximum and average distance between adjacent
turning regions. Contrary to sequences with ∗ mark, non-
marked sequences have very few distant turns, or no turn at
all. Those sequences mainly have long straight paths between
adjacent turning regions, and the vehicle changes driving
directions very slowly with very large radius of curvature,
which is not our target environment.

In Table III, we additionally compute the translation error
suggested in [36] of our method. We compare the performance
of our method to the ORB-mono and stereo and the state-of-
the-art plane-based scale-aware MVO works [16], [20], [21].
Because no open-source implementation is available for these
works, we refer to the reported results in [16], [20], [21]. The
method [21] shows the best and stable performance thanks to
the robust ground point extraction and aggregation strategies
proposed in [21]. Similar to the results in Table II, our method
shows comparable performance on the ∗-marked sequences
with the average translation error about 3.5 %. The method
[20] fails to track motion in several sequences because it uses
a fixed image region to obtain the ground features, and [16]
reports divergence in 07 due to the occlusion of the fixed
ground region by a dynamic object.

The representative trajectories for successful sequences are
depicted in Fig. 11. Except for several long straight regions,
our method yields the absolute metric trajectory that overlaps
with the ground truth line. The average of the scale error ratio
RMSE on 00,05,07,08 is about 8 % corresponding to 1/10
of the naive ORB-mono case.

2) SNU Underground Parking Lots Datasets: To demon-
strate the promising applicability of our method for indoor
driving, we collect our own driving datasets, called SNU
underground parking lots datasets. Different from the KITTI
outdoor datasets, due to the absence of the external ground
truth measurement such as the GPS/INS solution, we addi-
tionally record the 3-D LiDAR pointcloud, and execute the
LiDAR odometry and mapping (LOAM) algorithm [40] on
our datasets to obtain the accurate metric trajectory. For the
LOAM trajectories, we utilize not the raw odometry result but
the trajectory after the mapping procedure for high accuracy.

The hardware setting of the automobile and sensor suites
is shown in Fig. 12, and sensor specifications are written in

TABLE IV
HARDWARE SPECIFICATIONS OF THE AUTHOR-COLLECTED DATASET

Hardware Qty. Specifications

Vehicle 1
Hyundai Elantra CN7 2021
length: 4.68 m, width: 1.82 m
height: 1.41 m, wheel base: 2.72 m

Camera 3

Matrixvision mvBlueCOUGAR-X104iG
1032 × 772 pixels gray image at 10 Hz
Global shutter and hardware triggered
GiGE interface

3-D LiDAR 1
Velodyne VLP-32C
32-channel 360 deg . laser scans at 10 Hz
20 deg . vertical field of view

IMU 1 Lord Microstrain 3DM-GX3-25 AHRS
3-axis acc., 3-axis gyro. at 250 Hz

Micro-
controller 1 Arduino MKR Zero with the Ethernet Shield

TABLE V
RESULTS OF THE CAMERA-VEHICLE EXTRINSIC CALIBRATION ON THE

AUTHOR-COLLECTED DATASET

Camera-vehicle pose in z-y-x Euler angles [degree]
Camera 0 Camera 2

Roll Pitch Yaw Roll Pitch Yaw
Truth 0.00 0.00 0.00 0.00 -20.00 0.00
Linear-only -0.15 3.97 0.18 0.26 -23.55 -0.15
Refinement 0.07 0.13 0.08 0.10 -20.12 -0.05

Table IV. We install three global shutter grayscale cameras,
a 32-channel 3-D LiDAR, and a 6-axis IMU on the roof
of the vehicle. All cameras are triggered to capture time-
synchronized 10 Hz images by the digital signal from the
Arduino MKR Zero microcontroller. All the sensors and the
microcontroller communicate to the Linux laptop computer by
the ethernet interface.

Our camera setting has L = 1.45 m and the height of the
cameras is H = 1.55 m from the ground. Two main cameras
numbered by 0 and 1 face front, and an auxiliary camera
with the number 2 is rotated left by 20 degrees. The extrinsic
parameters of cameras, 3-D LiDAR and IMU are calibrated
by using the LiDAR and camera extrinsic calibration [41].

We drive the vehicle in two multi-floor underground parking
lots: bldg_39 and bldg_220. Overviews and dimension of
both environments are given in Fig. 14. bldg_39 has two
floors with the identical shape; bldg_220 has three floors
with different shapes. Especially in bldg_220, spiral inter-
floor transitions are concentric, which could be used as a
reference point for qualitative evaluations.

Representative scenes for each dataset are shown in Fig. 13,
and each alphabetic label corresponds to the location with the
same label in Fig. 14. Different from the KITTI datasets, there
are only few spurious image features on the ground generated
by the specular reflection, which might not be suitable for the
plane-based scale-aware MVO methods [15]–[22].

First, we estimate the camera-vehicle extrinsic pose of our
experimental setting. For the calibration, we consider cameras
0 and 2 depicted in the layout of Fig. 12. We use the pose
trajectory of each camera obtained from the MVO between
the first two turns of bldg_39. In Table V, the linear-only
method yields inaccurate results as reported in the analysis
on the synthetic dataset. On the contrary, the full refinement
shows very accurate performance with average error smaller
than 0.2 degrees. We use the resulting camera-vehicle extrinsic
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Fig. 13. Representative images of the author-collected underground parking lots dataset Circled alphabets correspond to the locations marked by the
same symbols in Fig. 14.
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Fig. 14. Overviews of the author-collected datasets bldg_39 has two
floors with the same shape, and bldg_220 has three floors with the spiral
inter-floor passage.

(b)(a)
Fig. 15. Limitations of using the fixed image region for ground landmarks
The red quadrilateral region of interest (ROI) is commonly used as the ground
plane region [16]. (a) In the non-flat passage, points on the pillar and slide
are in the ROI. (b) No point is observed from the ground. Our method does
not require the assumption on the feature distribution such as ground points.

poses during the experiments.
Implementation results are shown in Fig. 16. As there is no

ground-truth trajectory for our datasets, we overlay resulting
trajectories onto the real-scale floorplan drawing, and compare
our method with two absolute-scale navigation methods, i.e.,
the ORB-stereo and LOAM. The LOAM successfully operates
on the bldg_39 dataset, however, it fails to estimate forward
motion at the spiral inter-floor passages of bldg_220 because
there are very few structural 3-D features along the driving
direction as seen at the label G⃝ of Fig. 13. Nevertheless, the

TABLE VI
QUANTITATIVE COMPARISON ON THE AUTHOR-COLLECTED DATASET -

SCALE ESTIMATION ERROR RATIO

Scale estimation
error ratio RMSE [%] Sequence statistics

bldg
No.

ORB-
mono

ORB-
stereo Ours # of

turns

min.
dist.
[m]

max.
dist.
[m]

avg.
dist.
[m]

39 21.7 0.7 1.3 12 5.7 11.9 7.7
220 24.2 0.8 1.8 22 6.2 45.2 13.4

trajectories on each floor are stably estimated and we can use
them as references of comparison.

In Table VI, we show quantitative results of ORB-mono,
ORB-stereo, and ours on the author-collected datasets. Due
to the lack of the ground truth trajectory, we consider LOAM
results as comparison references. We compute the error metric
except for the drifted spiral passages of bldg_220. In both
datasets, our method shows competitive performance to ORB-
stereo thanks to frequent turning motions in short distances.

While the ORB-stereo operates accurately for all sequences,
the scale of the monocular version severely drifts. We think
that the severe drift of the ORB-mono is induced by many
turns in small-scale environments, which makes the connec-
tivity of the landmark tracks much weaker due to the frequent
and large changes of the viewpoints. Contrarily, such driving
environments are suitable for our method, and consequently,
our method shows accurate metric-scale trajectories compara-
ble to the ORB-stereo and LOAM.

In Fig. 15, we additionally illustrate the fixed image region
by the blue quadrilateral where the ground landmarks are
likely to emerge. As seen in Fig. 15(a)–(b), off-planar features
are included in the fixed region, and no planar landmark is
detected in this region, which is not a favor circumstance to
the methods depending on the ground features. Note that our
method can recover the scale even in the non-flat ground of
the inter-floor passages at the labels C⃝ and G⃝ of Fig. 13. This
is because our method does not depend on any specific feature
distribution such as the flat ground features right in front of the
camera assumed in the aforementioned plane-based methods.

VI. CONCLUSION

In this paper, we proposed the scale-aware MVO system
utilizing the vehicle kinematic constraint. Main idea of our
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ORB-mono w/o LC ORB-stereo w/o LC

Building 39 Building 220

Fig. 16. Overall trajectories of our method (magenta), ORB-SLAM with monocular (green) and stereo settings (yellow), and the LOAM (black) [40]

method was to utilize the vehicle kinematic motion model to
observe the absolute metric scale in turning motions. To de-
scribe camera motion attached to the vehicle, we first estimated
the camera-vehicle extrinsic pose by the proposed extrinsic
calibration method. To stably observe the absolute scale, we
presented the method to detect turning regions, and the scale
observer formulated as a function of the camera rotation and
the translation direction angles. By in-depth analysis on each
proposed module and extensive experiments on the driving
datasets, we showed that our method can recover the absolute
scale of the camera translation motion with no external sensor
and assumption on surrounding circumstances, such as planar
ground landmarks.

We suggest potential extensions of our method; as reported
in Section V-C1, the scale could not be propagated for long
straight motion between turns. In this case, the plane-based
scale estimation method [20] may be more effective, and its
performance can be further improved with a plane region
detection based on a panoptic segmentation [42]. Therefore,
combining the other methods and our method will be a
promising work. Also, we suggest using an omni-directional
camera such as [4] because landmarks can be tracked over
360 degrees turning motion, which gives stronger connectivity
among landmarks and keyframes. Furthermore, there might be
no need to frequently update new keyframes unlike the pinhole
camera setting, and thus, the large rotation angle between
keyframes can be obtained during turns, which facilitates more
stable scale observation.
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[3] R. Wang, M. Schwörer, and D. Cremers, “Stereo dso: Large-scale direct
sparse visual odometry with stereo cameras,” in IEEE International
Conference on Computer Vision, Oct. 2017, pp. 3923–3931.

[4] C. Won, H. Seok, Z. Cui, M. Pollefeys, and J. Lim, “Omnislam: Om-
nidirectional localization and dense mapping for wide-baseline multi-
camera systems,” in IEEE International Conference on Robotics and
Automation, May 2020, pp. 559–566.

[5] S. Heo, J. Cha, and C. G. Park, “Ekf-based visual inertial navigation
using sliding window nonlinear optimization,” IEEE Transactions on
Intelligent Transportation Systems, vol. 20, no. 7, pp. 2470–2479, July
2019.

[6] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monocular
visual-inertial state estimator,” IEEE Transactions on Robotics, vol. 34,
no. 4, pp. 1004–1020, Aug. 2018.

[7] D. Scaramuzza, “1-point-ransac structure from motion for vehicle-
mounted cameras by exploiting non-holonomic constraints,” Interna-
tional journal of computer vision, vol. 95, no. 1, pp. 74–85, Oct. 2011.

[8] R. Kang, L. Xiong, M. Xu, J. Zhao, and P. Zhang, “Vins-vehicle:
A tightly-coupled vehicle dynamics extension to visual-inertial state
estimator,” in IEEE Intelligent Transportation Systems Conference, Oct.
2019, pp. 3593–3600.

[9] J. H. Jung, J. Cha, J. Y. Chung, T. I. Kim, M. H. Seo, S. Y. Park,
J. Y. Yeo, and C. G. Park, “Monocular visual-inertial-wheel odometry
using low-grade imu in urban areas,” IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 2, pp. 925–938, Feb. 2022.

[10] F. Ma, J. Shi, L. Wu, K. Dai, and S. Zhong, “Consistent monocular
ackermann visual–inertial odometry for intelligent and connected vehicle
localization,” Sensors, vol. 20, no. 20, p. 5757, 2020.

[11] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],” IEEE
Robotics & Automation Magazine, vol. 18, no. 4, pp. 80–92, Dec. 2011.

[12] G. Nützi, S. Weiss, D. Scaramuzza, and R. Siegwart, “Fusion of imu
and vision for absolute scale estimation in monocular slam,” Journal of
intelligent & robotic systems, vol. 61, no. 1, pp. 287–299, Jan. 2011.

[13] S. Chiodini, R. Giubilato, M. Pertile, and S. Debei, “Retrieving scale on
monocular visual odometry using low-resolution range sensors,” IEEE
Transactions on Instrumentation and Measurement, vol. 69, no. 8, pp.
5875–5889, Aug. 2020.
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