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Abstract—We present the first annotated benchmark datasets
for evaluating free-flyer visual-inertial localization and mapping
algorithms in a zero-g spacecraft interior. The Astrobee free-
flying robots that operate inside the International Space Station
(ISS) collected the datasets. Space intra-vehicular free-flyers face
unique localization challenges: their IMU does not provide a
gravity vector, their attitude is fully arbitrary, and they operate
in a dynamic, cluttered environment. We extensively evaluate
state-of-the-art visual navigation algorithms on these challenging
Astrobee datasets, showing superior performance of classical
geometry-based methods over recent data-driven approaches.
The datasets include monocular images and IMU measurements,
with multiple sequences performing a variety of maneuvers
and covering four ISS modules. The sensor data is spatio-
temporally aligned, and extrinsic/intrinsic calibrations, ground-
truth 6-DoF camera poses, and detailed 3D CAD models are
included to support evaluation. The datasets are available at:
https://astrobee-iss-dataset.github.io/.

Index Terms—Data Sets for SLAM, Space Robotics and
Automation, SLAM, Autonomous Vehicle Navigation.

I. INTRODUCTION

ISUAL navigation, such as visual-inertial odometry
V (VIO) and visual simultaneous localization and mapping
(vSLAM), is one of the fundamental building blocks in
robotics, autonomous vehicles, and augmented reality (AR)
applications for positioning the 6 degrees of freedom (DoF)
camera pose of a given query image. Due to its importance,
various indoor and outdoor datasets [1]-[3] from autonomous
vehicles to drones have been published over the past decade
and have performed as de facto benchmark baselines, enabling
the advancement of visual navigation research. Thanks to vari-
ous datasets, state-of-the-art VIO and SLAM methods [4]-[7],
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Fig. 1. Illustration of the Astrobee datasets. Dense 3D reconstruction of JEM
(top) with our ground-truth generation pipeline. Astrobee, a free-flying intra-
vehicular robot (IVR) designed to autonomously navigate on the International
Space Station (ISS), acquires monocular image sequences (bottom) and IMU
measurements across four ISS modules (top).

which utilize multiple-view geometry and/or deep learning,
show promising 6-DoF camera motion tracking results in a
variety of indoor and outdoor environments on Earth.

Several recent studies [8], [9] have focused on developing
free-flying robots (NASA Astrobee, JAXA Int-Ball, DLR CI-
MON, etc.) that perform a variety of intra-vehicular activities
in microgravity [10] on the International Space Station (ISS).
We will increasingly need smart, self-run space robots to keep
an eye on things while humans are away in future spacecraft
like the Gateway lunar space station [11]. While accurate
and robust in-spacecraft navigation is critical for the missions
of intra-vehicular robots, a dataset for visual navigation in a
spacecraft has not yet existed. When considering challenges
for visual navigation, intra-vehicular environments differ from
indoor and outdoor scenes on Earth due to the nature of space-
craft: absence of a gravity vector, severe lighting changes,
environmental changes/discontinuities between ISS modules,
and occlusions from unorganized cargo bags.

To address these issues, we introduce new visual navigation
datasets acquired in the challenging interior environments of
ISS, which have not been covered by existing datasets. The
datasets are captured by the Astrobee free-flying robots [8]
onboard the ISS since 2019 during intra-vehicular activities,
including interior environmental surveys (e.g., systems in-
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spection, monitoring, and sound level measurements). They
consist of images from a forward-facing monocular navigation
camera (NavCam), IMU measurements in microgravity, and
pseudo ground truth 6-DoF camera poses generated from our
sequential mapping and localization pipeline [10], [12]. Our
main contributions are as follows:

e We present twenty-three new Astrobee datasets for bench-
marking in-cabin visual navigation methods on the ISS
with pseudo ground truth 6-DoF camera poses as well as
3D CAD models.

e We present detailed evaluations of state-of-the-art
VO/SLAM methods showing their limitations in these
challenging intra-vehicular activities on the ISS.

To the best of our knowledge, this is the first visual-inertial
dataset obtained from outer space for intra-vehicular robots
(IVR). We hope our Astrobee datasets serve as standards for
comparison, facilitating the progress of IVR navigation inside
facilities such as the ISS, Gateway, and future Commercial
LEO Destinations (CLDs).

II. RELATED WORK

Numerous datasets [1]-[3] containing a wide range of in-
door and outdoor visual scenarios on Earth have been released
in computer vision and robotics communities over the past
decade, but there is no dataset for autonomous navigation of
IVRs in a spacecraft yet.

A variety of free-flying robots in space orbital stations are
being actively researched for photographing operations [9],
[13], microgravity robotics research platforms and automation
of ISS maintenance tasks [8], [14], and autonomous assistance
system to aid astronauts [15]. The ability to precisely locate
intra-vehicular robots and create accurate maps inside the ISS
forms the basis for their utilization, regardless of the scenarios.

The NASA SPHERES [14], the predecessor of Astrobee,
can only perform 6-DoF positioning on the ISS with the help
of pre-installed ultrasonic beacons in the SPHERES work
envelope. Although the JAXA Int-Ball [9] employs an in-cabin
visual navigation approach with optical navigation cameras, it
requires the two stereoscopic markers to be installed at the
planned position. The localization accuracy of the marker-
based navigation method depends heavily on how well the
artificial markers are visible within the camera’s field of
view (FOV). While the DLR/Airbus CIMON [15] is on the
move on the ISS, a dual 3D camera sensor builds a map
of the surrounding environments based on SLAM algorithms.
However, its VIO/SLAM algorithms and navigation accuracy
have not been reported in detail, and CIMON is only tested
in the Columbus laboratory module. The NASA Astrobee
freely navigates inside the ISS, originally employing the
MSCKEF [16]-based visual-inertial navigation method [12], and
not relying on any artificial markers or auxiliary devices. In or-
der to further improve the navigation performance of Astrobee,
semantic mapping [17] has been recently studied and a visual-
inertial graph-based localization (AstroLoc) [10] algorithm has
replaced the MSCKF implementation. While this has improved
localization accuracy, AstroLoc sometimes fails to track the 6-
DoF ego-motion due to severe lighting changes [18], abrupt
in-place rotations, and navigation between ISS modules.
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Fig. 2. The Astrobee free-flying IVR used for dataset collection. A NavCam
provides monocular image sequences inside the ISS at 15 Hz. Angular rates
and acceleration measurements from the IMU are logged at 250 Hz. The
pseudo ground truth of camera poses for all images is generated through our
offline SfM pipeline.

TABLE I
SENSORS IN ASTROBEE AND GROUND-TRUTH ACCURACY

Sensor Model Rate (Hz)  Characteristics
1280% 960,

Camera  DFM 42BUC03-ML 15 Global Shutter

IMU Epson M-G362PDC1 250 MEMS

Position ~ Our SfM Pipeline 15  Accuracy:~ 5 cm

Overall, research on the navigation of IVRs in spacecraft is
quite sparse while up-to-date real-time VIO/SLAM methods
such as ORB-SLAM3 [4], DROID-SLAM [7], and VINS-
Mono [6] are being actively validated on robotic platforms and
Earth-based datasets. We hope our Astrobee dataset stimulates
new and exciting research for the autonomous navigation of in-
spacecraft free-flying robots in the upcoming era of expanded
human presence in space by providing challenging scenarios
for VIO and SLAM-based methods.

III. THE ASTROBEE DATASETS

The Astrobee free-flying robots have been operating on-
board the ISS since 2019. We describe the characteristics of
the Astrobee datasets as well as the sensor setup of Astrobee
and the data acquisition/calibration processes. We explain how
to generate pseudo ground truth camera poses for all images
with our sequential mapping and localization algorithms.

A. Astrobee Platform

The Astrobee free-flying robots, equipped with a suite of
six commercial off-the-shelf (COTS) external sensors [8], are
utilized on the ISS for data collection as shown in Fig. 2.
Although each Astrobee has a variety of cameras such as Haz-
Cam, PerchCam, and SciCam [8], we have built a dataset with
monocular images from NavCam for now, which is mainly
utilized for general-purpose in-cabin visual navigation. The
NavCam is mounted in a forward-facing position, which pro-
vides monocular image sequences inside the ISS at 15 Hz with
a 116° field of view (FOV), fixed focus, and 1.2 megapixel
(MP) resolution (for full details of Astrobee hardware, refer
to [19]). Angular rates and acceleration measurements from
the IMU are logged at 250 Hz in Table I. Fig. 2 illustrates the
position of the NavCam and IMU, and corresponding camera
and IMU body frames.
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Fig. 3. Example images from NavCam to demonstrate the diversity in our Astrobee datasets. Each column represents a sequence of intra-vehicular activities
of Astrobee free-flying robots currently operating on the ISS. They include lighting changes within Kibo, abrupt in-place 3D rotations, free flights between
ISS modules, hatch/wire inspection tasks, and occlusions by other Astrobee robots.

The Astrobee robots make extensive use of the open-source
Robot Operating System (ROS), which is used for all internal
communications between various Astrobee software compo-
nents. Visual and inertial data are timestamped and recorded
onboard the Astrobee as rosbag files with ROS facilities. Since
there are no sensors or beacons on the ISS to localize Astrobee
directly, we generate pseudo ground truth later through our
offline Structure-from-Motion (SfM) process with an accuracy
of about five cm [18] in Table 1.

B. Dataset Description

Our datasets consist of various intra-vehicular activities of
Astrobee free-flying robots currently operating on the ISS
between May 13, 2019 and July 14, 2022. The Astrobee
IVRs perform tasks and operate from the “Kibo” Japanese
Experiment Module (JEM) through the “Harmony” Node 2
module to the “Destiny” U.S. Lab module on the ISS as shown
in Fig. 1. In the Astrobee datasets, they fly autonomously
between ISS modules and conduct tasks including interior
environmental surveys (e.g., indoor mapping and sound level
measurement) inside Kibo, which is the largest ISS module
(cabin free space ~ 8 x 2.25 x 2.25 m). Environmental
changes (e.g., reconfiguration of experiments, individual light
sources moving, and stowage containers being attached to the
deck) of Kibo over time are also reflected in the Astrobee
datasets. Fig. 3 provides visual examples of the proposed
Astrobee datasets. We re-organize Astrobee datasets into four
categories according to the scenarios: Calibration, Testing and
Debugging, Free Flight, and Intra-Vehicular Activity. Table 11
shows statistics over the 23 sequences of the Astrobee dataset.

We briefly summarize the recorded sequences according to
these categories.

1) Calibration: To calibrate the various cameras and the
IMU installed in Astrobee, we record fixed targets attached

to the docking station while the Astrobee moves around it.
We employ Kalibr [20], an open-source calibration toolbox.
The fixed targets include both an 11 x 6 checkerboard with
25.4mm square size and ALVAR fiducials [21] (see Sec. III-D
for calibration details).

2) Testing and Debugging: These sequences are intended
to test and debug the separated movement of each axis in 6-
DoF camera motions along and around the principal axes of
NavCam when evaluating visual navigation and localization
algorithms. In the rpy (roll-pitch-yaw) sequences, the cam-
era rotates primarily around the principal axes, the camera
frame, with little translational motions. Similarly, in the dock
sequences, the camera primarily moves along the Z-axis
(forward/backward), from the docking station, with occasional
minor rotational motions during the redocking process.

3) Free Flight: These sequences consist of the nine datasets
recorded by Astrobee while freely flying within Kibo and/or
between modules inside the ISS. In some sequences, Astrobee
robots fly autonomously and come back to where they started,
containing several loop closures to allow visual SLAM algo-
rithms to recognize previously visited spaces and utilize them
to reduce accumulated drift error. We also record the “return
journey” sequences with the camera at different viewing
angles, facing forward, upward, leftward, and rightward under
three different lighting conditions (dark, middle, and light due
to changes in date). The USL2JEM and JEM2USL sequences
include autonomous free flights from JEM to USL and vice
versa in light-changing environments.

4) Intra-Vehicular Activity: We prepare diverse intra-
vehicular activities and survey scenarios conducted on-
board free-flying space IVRs. Some sequences pose chal-
lenges due to severe lighting changes, environmental
changes/discontinuities between modules, and occlusions
caused by cargo bags or other Astrobee robots. The fifth
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TABLE II
LIST OF ASTROBEE DATASET SEQUENCES

Sequence Name Duration Avg. Trans.

[s] Speed. [m/s]

Avg. Rot.
Speed. [deg/s]

Testing and Debugging

td_roll 63 0.009 2.958
td_pitch 75 0.007 2.514
td_yaw 50 0.006 3.753
td_dock 98 0.028 0.417
Free Flight

ff_return_journey_forward 402 0.032 2.155
ff_return_journey_up 413 0.032 2.563
ff_return_journey_down 398 0.030 2.400
ff_return_journey_left 303 0.041 3.068
ff_return_journey_right 328 0.033 2.750
ff_return_journey_rot 108 0.114 12.746
ff_JEM2USL_dark 32 0.148 9.162
ff_USL2JEM_bright 92 0.056 1.566
ff_nod2_dark 296 0.009 2.616
ff_nod2_bright 265 0.010 2.639
Intra-Vehicular Activity

iva_kibo_trans 229 0.047 0.796
iva_kibo_rot 196 0.054 2.402
iva_hatch_inspectionl 403 0.008 1.234
iva_hatch_inspection2 521 0.011 0.971
iva_watch_queenbee 236 0.009 2.285
iva_robot_occulusion 192 0.010 2.748
iva_ARtag 62 0.083 3.312
iva_badlocal_rotation 313 0.009 2.650
iva_badlocal_descend 244 0.005 0.335

Fig. 4. Various orientations of NavCam viewing frustums attached to the
Astrobee in the Free Flight category. Each pair from left to right represents
forward, down, up, right, left, and rot sequences in "ff_return_journey_".

column of Fig. 3 shows example images in hatch inspection
sequences while observing the hatch seal and shooting light
to inspect it. The wire inspection sequences record the walls
in JEM very closely, resulting in some wires causing severe
occlusions as shown in the sixth column of Fig. 3. In the
seventh column of Fig. 3, severe occlusions and moving
dynamic objects occur in the images by another Astrobee robot
performing different missions.

C. Dataset Format

We specify the format and conventions in which sensor
data, ground-truth, and calibration parameters are reported.
We provide each Astrobee sequence in the TUM RGB-D for-
mat [1] for compatibility with existing evaluation and dataset
parsing tools. Each sequence is compressed as a single zip file

Fig. 5. Astrobee traces of our dataset recordings on the ISS (top). Colors
encode each Astrobee dataset sequence. NavCam images (bottom) taken from
the locations marked as camera frustums (dark green, purple, and orange)
for each sequence show the interior of Kibo. The purple pose is rolled
approximately 180° relative to the dark green pose, thus the image in purple is
upside down, which is an interesting IVR maneuver observed in the spacecraft.
sequence/

+— description.yaml
— gray/

1—timestamp.png
+— gray_raw/
1—timestamp.png
t— gray.txt
+— undistorted_calib.txt
t— distorted_calib.txt
t— imu.txt
— groundtruth.ixt

Fig. 6. Structure of the provided zip files and their location that stores each
Astrobee sequence. Note that ‘sequence’ is a placeholder.

containing a description file, images, calibration parameters,
ground-truth, and IMU measurements as illustrated in Fig. 6.

e description.yaml: a text file containing an overall
description of the sequence (the name of the robot used,
the original rosbag file, and the date of recording, etc.),

e gray/: a folder containing all undistorted grayscale
images (PNG format, 1 channel, 8-bit per channel),

e gray_raw/: a folder containing all raw (distorted)
grayscale images with FOV lens distortion [21],

e gray.txt: a text file with a consecutive list of all
grayscale images (format: timestamp filename),

e undistorted_calib.txt: a text file containing
camera intrinsic parameters for undistorted images (for-
mat: fx fy cx cy),

e distorted_calib.txt: atext file containing camera
intrinsic parameters for distorted images with FOV lens
distortion coefficient (format: fx fy cx cy w),

e imu.txt: a text file containing the timestamped gyro
and accelerometer measurements expressed in IMU body
frame (format: timestamp wx wy wz ax ay az),

e groundtruth.txt: a text file containing the ground-
truth 6-DoF camera poses for all grayscale images stored
as the timestamped translation vector and unit quaternion
expressed in ISS world coordinate frame (format: times-
tamp tx ty tz qx qy qz qw).

In addition to these zip files organized by activity scenarios
in the spacecraft, we also release the original raw rosbag file
recorded during the real flight of Astrobee on the ISS.
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Fig. 7. Example images containing calibration targets in Kalibr [20] for
NavCam calibration. The checkerboard pattern attached to the Kibo airlock
(left) and ALVAR fiducials installed in the Astrobee docking station (right).

Fig. 8. The NavCam images comparison before (top) and after (bottom)
undistortion given by camera calibration with the FOV lens distortion model.
Target lines inside the ISS modules on the original images (top) are corrected
to straight lines after undistortion (bottom).

D. Camera Calibration

The proposed Astrobee datasets contain raw (distorted)
image data, intrinsic and extrinsic calibration parameters. We
calibrate the intrinsic of the camera (NavCam) and the camera-
IMU extrinsic prior to dataset collection with Kalibr [20],
which is a ROS-friendly and automatic calibration tool to
support various types of targets, projection models, and lens
distortion models (for full details, refer to [21]). Images
containing ALVAR fiducials and checkerboard targets from
NavCam can be found in the Calibration category in the
dataset as shown in Fig 7.

It is noteworthy that we employ the field-of-view (FOV)
lens distortion model [22] rather than the radial-tangential
because the distortion in the images becomes so severe
(see Fig 8). The FOV model is more suitable for a fish-
eye lens camera and its nonlinear distortion. We calibrate
the FOV distortion coefficient, the FOV angle w of the
ideal fish-eye lens, with Kalibr [20], and can obtain the
undistorted images in Fig 8. We provide both the original
distorted images (gray_raw/) with the camera intrinsic
and FOV distortion (distorted_calib.txt) and the
undistorted images (gray/) with the intrinsic of the camera
(undistorted_calib.txt) all together for the conve-
nience of researchers.

E. Ground Truth Generation

The pseudo ground truth creation pipeline relies on the
offline map building and online localization pipeline [12]
shown in Fig. 9. To generate a map, the mapping pipeline
first detects SURF features and matches in the provided set
of images before using incremental bundle adjustment (BA)
to optimize both the camera poses and 3D positions of the
matched features. It then registers the map to the ISS world

Structure-from-Motion (SURF)

Detect BRISK Features

[

!

Registration to ISS Coordinate Query Bag of Words Database

- !

Rebuilding Map with BRISK )
P3P with RANSAC

— I— l
Bag of Words Database

Motion-only Bundle Adjustment

Offline Map Construction Pipeline Online Image Localization Pipeline

Fig. 9. Our offline 3D map construction and localization pipeline for
generating pseudo ground truth camera poses for visual navigation benchmark.

Fig. 10. A view from the NavCam showing the inside of Kibo (left) and a
dense point cloud with our ground-truth 6-DoF camera poses (right). Objects
in the red boxes (hatch, wires, laptop, and another Astrobee) and Kibo airlock
are 3D reconstructed well from the dense point cloud (right), showing our
ground-truth generation is qualitatively accurate.

coordinate frame using a 3D ISS model as shown in Fig. 1.
The accuracy of our ISS maps is about 9 cm on average
(for more detailed quantitative metrics and analysis, refer to
the supplementary materials). For online use, the pipeline
rebuilds the resulting SURF map as a BRISK map by detecting
BRISK features and re-running BA with the camera poses
fixed before building a hierarchical vocabulary tree using the
BRISK features for fast image matching. BRISK features are
less accurate but faster to compute and enable the localizer
to more quickly detect and match features between images
during live activities.

Pseudo ground truth is generated for new data using the
same procedure used for updating existing maps. We first
create a SURF map for the new data and merge it with an
existing map by matching new SURF feature detections to
existing ones before re-running BA with the existing map’s
camera poses fixed. After running BA, the resulting registered
poses for the new images are then used as ground truth. Since
the new data is downsampled before being added to remove
low movement and in-place rotation sequences that often lead
to errors during BA, we also use our localization pipeline to
match downsampled images to the updated ground truth map,
relying on P3P with RANSAC with further motion-only BA
using the inlier features from RANSAC. Fig 10 shows a high-
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accuracy dense reconstruction with COLMAP [23] with the
ground-truth 6-DoF camera poses we generated.

IV. VISUAL NAVIGATION BENCHMARK

We benchmark six state-of-the-art visual odometry (VO)
and SLAM algorithms on the Astrobee datasets. We compare
both deep learning and classical VO/SLAM methods with
AstroLoc [10], which is the visual-inertial localizer currently
employed in the Astrobee robots inside the ISS.

A. Evaluated Methods

AstroLoc [10], a graph-based monocular visual-inertial lo-
calizer that runs on the limited computing platform of As-
trobee on the ISS, plays a key role as a baseline in the
visual navigation benchmark. AstroLoc [10] in VIO mode
only uses VIO information, while localization mode also uses
map-based measurements. We choose ORB-SLAM3 [4] and
DSO [5], representative methods of geometry-based classical
VO/SLAM. ORB-SLAM3 [4] is one of the most represen-
tative feature-based visual SLAM methods, building a map
and localizing 6-DoF camera poses in real-time based on
ORB features. DSO [5] is one of the representative direct
VO/SLAM approaches that utilize image intensity gradients
such as image edges. For the deep learning-based VO/SLAM
approaches, we select DROID-SLAM [7], DF-VO [24], and
SC-SfMLearner [25]. We run all VO/SLAM methods made
publicly available by the original authors from their official
GitHub pages with default (initial) parameter settings. Note
that AstroLoc is carefully tuned for the Astrobee through
a parameter sweep to perform its mission. To make a fair
comparison of the motion tracking performance of each SLAM
method, we disable loop closing and relocalization steps in
ORB-SLAM3 [4] and DROID-SLAM [7]. NLC denotes ‘no
loop closing’ in Table III. Monocular image sequences from
NavCam are used as input for the evaluation, and we utilize
the pre-trained models for each data-driven approach on the
official GitHub pages.

B. Evaluation Metrics

We employ the Umeyama algorithm [26] to align the
estimated and ground-truth trajectories, following [1], [27].
Accordingly, two aligned trajectories share the same scale and
starting points. Given the ground-truth and estimated positions
that are associated with the timestamps, we compute the
absolute trajectory error (ATE) [1] and the absolute rotation
error (ARE) [28]. To evaluate the overall accuracy of the
estimated trajectories, we compute the root mean square of
the absolute trajectory error and the absolute rotation error.
Furthermore, we utilize success rate (SR) [29], the percentage
of successfully localized images within a certain threshold
(0.3m, 5°) with respect to the ground-truth, which is very
effective for evaluating the success/failure ratio.

C. Discussion

Table III quantitatively shows the results of six state-of-the-
art visual odometry and SLAM methods on the Astrobee ISS

datasets. For each sequence, we highlight the smallest error
in bold, and the second best is underlined. We also visualize
the trajectory estimation results of each VO/SLAM approach
compared to the ground-truth as shown in Fig 11.

First, we observe that classical geometry-based meth-
ods such as ORB-SLAM3 and AstroLoc outperform the
deep learning-based VO/SLAM approaches. In the classical
geometry-based methods, they are accurate in the order of
ORB-SLAM3, AstroLoc, and DSO, and their ATE values are
0.119 m, 0.139 m, and 0.196 m on average, respectively. On
the other hand, the deep learning approaches show inaccurate
6-DoF positioning results overall, except for DROID-SLAM
results in some sequences. The average ATE of the DROID-
SLAM is 0.469 m, whereas DF-VO and SC-SfMLearner are
1.433 m and 2.896 m, respectively. Overall, ORB-SLAM3
with default parameters and the fine-tuned AstroLoc are the
first and second most stable on the ISS for most Astrobee
sequences with an accuracy of less than 0.3 m error. DROID-
SLAM demonstrates superior accuracy by a large gap from
the existing deep learning-based VO/SLAM approaches, and
sometimes achieves the most accurate results among six SOTA
methods while it depends on heavy GPU computation. DF-
VO and SC-SfMLearner show inaccurate and inconsistent 6-
DoF motion tracking results due to poor generalization of deep
learning-based approaches.

We report the absolute rotation error (ARE) of each
VO/SLAM method in Table IV because of the importance
of rotational motion tracking in VO/SLAM [30]. Similar to
Table III, we observe that classical geometry-based meth-
ods outperform deep learning-based approaches. The aver-
age ARE values of ORB-SLAM3, AstroLoc, and DSO are
0.605°, 0.609°, and 1.277°, respectively. On the other hand,
deep learning approaches generally show inaccurate rotational
results, except for DROID-SLAM in some sequences. The
average ARE value of DROID-SLAM is 0.523°, while DF-
VO and SC-SfMLearner exhibit much higher error values of
2.131° and 24.761°. Overall, DROID-SLAM, ORB-SLAM3,
and AstroLoc demonstrate the highest stability for rotational
motion tracking on the ISS, with an accuracy of less than 1°
error. DROID-SLAM exhibits remarkable accuracy, surpassing
the other DL-based methods by a significant margin.

When comparing across SLAM methods with the relo-
calization step disabled, ORB-SLAM3 is the most accurate,
followed by DROID-SLAM and AstroLoc, and their average
ATE values are 0.131 m, 0.485 m, and 0.595 m. The average
ARE values of ORB-SLAM3, DROID-SLAM, and AstroLoc
are 0.425°, 0.548°, and 1.036°, respectively. AstroLoc in VIO
mode clearly has lower accuracy when operating without the
pre-built ISS maps because it limits factors and optimization
times to perform graph-based optimization on Astrobee’s
limited computing power. ORB-SLAM3, based on the ORB
feature, shows the most accurate and consistent estimation
results regardless of the relocalization step.

Due to the challenging scenarios presented in the Astrobee
datasets, we report SR to evaluate the overall success ratio
of visual navigation in Table V. The order of SR aligns
consistently with the ATE and ARE results, indicating that
classical geometry-based methods outperform deep learning-
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TABLE III
EVALUATION RESULTS OF ATE RMSE (UNIT: M) ON ASTROBEE DATASETS

Sequence ‘ ff_return_journey_forward  ff_return_journey_up  ff_return_journey_left  ff_return_journey_rot ‘ iva_kibo_trans  iva_kibo_rot  iva_ARtag
AstroLoc 0.283 0.066 0.151 0.270 0.122 0.003 0.080
AstroLoc (VIO mode) 1.101 0.212 0.465 0.311 0.925 1.084 0.068
ORB-SLAM3 0.432 0.025 0.229 0.103 0.014 0.019 0.013
ORB-SLAM3 (NLC) 0.405 0.056 0.333 0.068 0.014 0.025 0.017
DSO 0.552 0.102 0.293 0.132 0.104 0.078 0.114
DROID-SLAM 0.561 0.026 0.227 0.014 0.013 2436 0.005
DROID-SLAM (NLC) 0.497 0.094 0.323 0.058 0.011 2.408 0.006
DF-VO 0.756 3.775 2.788 0.859 0.678 0.840 0.332
SC-SfMLearner 1.745 2.440 4.607 3.527 3.679 3.608 0.663
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Fig. 11. Estimated trajectories of the evaluated visual navigation algorithms on free flight and intra-vehicular activity sequences from our Astrobee datasets.
True (black) with our ground-truth generation is treated as ground-truth up to scale. Classical geometry-based approaches (AstroLoc, ORB-SLAM3, and DSO)
show more accurate and stable trajectory estimation results than deep learning-based methods (DROID-SLAM, DF-VO, and SC-SfMLearner).

TABLE IV ping process. DROID-SLAM is the most efficient among the
EVALUATION RESULTS OF ARE RMSE (UNIT: DEGREE) deep learning-based approaches without the cost of sacrificing
localization accuracy. For the Astrobee free-flyers, which do

Sequence | ol tdpich yaw not have a powerful GPU and have limited computing power,
AstroLoc 0.346 0401 0.879 AstroLoc is currently the most appropriate visual navigation
AstroLoc (VIO mode) 1.439 0.790 0.879 . . .

ORB-SLAM3 0.034 0149  1.632 method as it shows accurate motion tracking performance
ORB-SLAM3 (NLC) 0.044 0.126  1.105 similar to ORB-SLAM3 and operates much faster.

DSO 2080  0.145  1.609

DROID-SLAM 0083 037 1350

DROID-SLAM (NLC) | 0.090  0.137 1416

DF-VO 1.327 3.080  1.987 V. CONCLUSION

SC-SFM 21325 23364  29.595

We present the first annotated benchmark datasets for
evaluating free-flyer visual navigation algorithms in a zero-
based methods. Among the classical geometry-based methods, g spacecraft interior. Our datasets were captured with the
the average SR values of ORB-SLAM3, AstroLoc, and DSO  Agtrobee free-flyers operating inside the International Space
are 0.94, 0.94, and 0.93, respectively. In deep learning-based  gtation (ISS). These datasets capture a wide range of inter-
approaches, DROID-SLAM exhibits a superior success ratio  esting scenarios such as free flights and intra-vehicular activ-
over the others, with an average SR value of 0.84, while DF- jties in challenging environments like the absence of gravity,
VO and SC-SfMLearner show much lower average SR values  gevere lighting changes, environmental changes between 1SS
of 0.44 and 0.10, respectively. modules, and occlusions from unorganized cargo bags. The
We test VO and SLAM algorithms on the desktop computer proposed Astrobee datasets contain rectified grayscale images,
using an AMD Ryzen 9 5950X 16-Core Processor operating IMU measurements in microgravity, and pseudo ground truth
at 3.4GHz with 32GB of RAM, which is about 20 times 6-DoF camera poses, etc. Furthermore, we benchmark state-
faster than Astrobee’s hardware [10]. The desktop computer of-the-art visual navigation methods, including the currently
is also equipped with a graphic card with NVIDIA GeForce operating Astrobee localizer [10] on the ISS. We hope the
RTX 3080 to run deep learning-based methods. We report the  Astrobee dataset will inspire new research directions in visual
average run times of evaluated methods in Table VI. AstroLoc navigation, enabling a wide range of intra-vehicular activities
is significantly faster than ORB-SLAM3 and DSO while and tasks in the upcoming space age for VIO and SLAM-
showing accurate and precise positioning accuracy similar to  based methods. In future work, we plan to enrich the datasets
the performance of ORB-SLAM3. ORB-SLAM3, which is the by adding more scenarios such as object detection and handrail
most accurate geometric SLAM method, runs about five times  perception, and release time-synchronized depth images from
slower than AstroLoc although it includes not only visual other cameras in the Astrobee free-flyers such as HazCam,
odometry and localization like AstroLoc but also the map- PerchCam, DockCam, and SciCam.
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TABLE V
EVALUATION RESULTS OF SUCCESS RATE (SR) ON ASTROBEE DATASETS

Sequence ‘ ff_return_journey_forward  ff_return_journey_up  ff_return_journey_left  ff_return_journey_rot ‘ iva_kibo_trans  iva_kibo_rot  iva_ARtag | td_roll  td_pitch  td_yaw
AstroLoc 0.76 1.00 0.89 0.75 0.97 1.00 1.00 1.00 1.00 1.00
AstroLoc (VIO mode) 0.01 0.83 0.64 0.65 0.03 0.03 1.00 1.00 1.00 1.00
ORB-SLAM3 0.65 1.00 0.78 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ORB-SLAM3 (NLC) 0.67 1.00 0.71 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DSO 0.57 1.00 0.73 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DROID-SLAM 0.61 1.00 078 1.00 1.00 0.01 1.00 1.00 1.00 1.00
DROID-SLAM (NLC) 0.61 1.00 0.71 1.00 1.00 0.02 1.00 1.00 1.00 1.00
DF-VO 0.02 0.06 0.16 0.17 0.22 0.38 0.53 1.00 0.90 1.00
SC-SfMLearner 0.05 0.03 0.06 0.10 0.05 0.03 0.14 0.13 0.15 0.23
TABLE VI [9] S. Mitani, M. Goto, R. Konomura, Y. Shoji, K. Hagiwara, S. Shigeto, and

COMPUTATIONAL TIME COMPARISON ON ASTROBEE DATASET

Localizer Avg. Runtime [ms]
AstroLoc 52.37
ORB-SLAM3 258.24
DSO 77.20
DROID-SLAM 136.64
DF-VO 540
SC-SFMLearner 77.56
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