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Obstacle Avoidance of a UAV Using
Fast Monocular Depth Estimation

for a Wide Stereo Camera
Euihyeon Cho , Hyeongjin Kim , Pyojin Kim , and Hyeonbeom Lee

Abstract—In this study, we designed an obstacle avoid-
ance algorithm for a quadrotor unmanned aerial vehicle
(UAV) equipped with a wide field-of-view (FOV) stereo cam-
era, utilizing a learning-based depth estimation approach.
Depth estimation using monocular cameras is gaining inter-
est as a viable alternative to large and heavy sensors, such
as light detection and ranging (LiDAR) sensors. However,
deep learning-based depth estimation has low accuracy un-
less the depth estimation is done in an environment similar
to that of the training data. Therefore, we first designed a
depth estimation network for a wide-FOV stereo camera us-
ing two cameras. Then, we estimated the depth image using
a convolutional neural network and improved the accuracy
using stereomatching. We used the estimated depth images
to develop a simple behavior-arbitration-based control al-
gorithm that steers the quadrotor away from 3-D obstacles.
We conducted simulations and experiments using a real
drone in an indoor and outdoor environment to validate our
proposed algorithm. An analysis of the experimental results
showed that the proposed method could be employed for
navigation in cluttered environments.

Index Terms—Depth estimation, obstacle avoidance,
quadrotor, wide stereo camera.
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I. INTRODUCTION

UNMANNED aerial vehicles (UAVs), which are highly
maneuverable in 3-D space, have been recently employed

in various fields, such as subterranean exploration [1], delivery
[2], [3], and mapping [4]. The safe navigation of UAVs has
been studied using visual cameras [5], [6], [7], [8], 3-D light
detection and ranging (LiDAR) sensors [1], and event cameras
[9]. However, these sensors have serious drawbacks such as
high cost [1], [9] or collisions caused by a limited field-of-view
(FOV) [5], [6], [7].

In this article to handle the aforementioned problems, we
leverage recently developed monocular camera-based depth es-
timation. This algorithm has attracted significant attention for
its ability to accurately obtain a dense depth image in both
indoor and outdoor settings using an inexpensive monocular
camera [10], [11]. Monocular depth is adaptable for use with
fisheye cameras [12] or in extreme weather conditions through
the utilization of thermal imaging cameras [13]. Especially
when using a fisheye camera, accuracy may be degraded due
to differences in image size from the dataset and image distor-
tion issues. In addition, while the existing feature-based depth
estimation techniques [14] exhibit poor performance in the
presence of dynamic obstacles, monocular depth estimation
(MDE) demonstrates satisfactory performance even in dynamic
environments. Therefore, one of our objectives in this article is
to improve the accuracy of MDE, even in unseen environments.

A. Contribution

The main contributions of this study are as follows.
1) We developed a fast depth estimation network to en-

hance the computational speed and accuracy of the MDE.
To enhance depth estimation accuracy, we designed a
depth-refinement algorithm, which significantly improves
estimation performance. We performed a performance
comparison with existing algorithms [10], [11], [15], [16],
[17] using various datasets including Karlsruhe Insti-
tute of Technology and Toyota Technological Institute
(KITTI), Virtual KITTI2, ApolloScape, dense depth for
autonomous driving (DDAD), and our outdoor dataset.
The proposed algorithm shows fast and consistent perfor-
mance even in unseen and outdoor environments.

2) We perform comprehensive depth-estimation perfor-
mance evaluation on more diverse datasets such as
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Fig. 1. Integrated framework of our autonomous system.

KITTI, Virtual KITTI2, ApolloScape, DDAD, and our
collected dataset. This analysis demonstrated that our
algorithm accurately estimates depth across various
environments.

3) We conducted an obstacle avoidance experiment utilizing
depth estimation technology using our proposed algo-
rithm as shown in Fig. 1. Our algorithm generates avoid-
ance commands solely based on estimated depth images
and does not require additional mapping [4], [8] or obsta-
cle avoidance datasets [6]. In addition, unlike the approach
proposed in [5], our method can effectively handle various
complex types of obstacles.

II. RELATED WORKS

Computational load and complexity reduction in obstacle
avoidance when using optical flows have been extensively stud-
ied [18], [19], [20]. Flow-based algorithms are developed on the
premise that insects successfully avoid obstacles though their
computation complexity is much lower than that of trajectory
optimization [3], [8]. However, flow-based obstacle avoidance
algorithms [18] cannot be applied to complex environments
without accurate depth estimation. On the other hand, stereo-
based algorithms [19], [20] can deal with the depth problem.
In [19], stereo-based depth estimation was employed to com-
pute the optical flow. In [20], for long-range depth measure-
ment, a variable baseline stereo camera was used. Nevertheless,
flow-based algorithms [18], [19] are not suited for long-range
obstacle avoidance, and the method in [20] suffers from the
limited FOV of the stereo camera.

Earlier studies have proposed autonomous flight for a quadro-
tor with a fisheye monocular camera [8] or a wide stereo
camera [4] using a monocular visual-inertial system, but it is
difficult to deal with dynamic obstacles when using feature-
based obstacle avoidance. Learning-based autonomous navi-
gation algorithms have been developed to overcome dynamic
obstacles and other long-range avoidance problems [6], [7].
In [6], [7], an autonomous drone could generate the steering
command to achieve a safe flight in outdoor environments
using a residual convolution architecture. However, in these
studies, obstacle avoidance performance is not ensured in an
unlearned environment

To overcome this problem, an obstacle avoidance algorithm
that used learning-based depth estimation was proposed in [5].
It employed a MDE algorithm based on the approach introduced
in [21]. The desired heading angle and the forward/backward
speed of the UAVs were calculated from an estimated depth
image. However, these methods [5] also result in a limited
FOV for obstacle detection, and avoidance performance may
be degraded because of the low accuracy of depth estimation.
To improve the quality of depth estimation and overcome the
limited FOV, learning-based depth estimation using a fisheye
camera [22] was studied; however, depth could not be estimated
in real-time in this study. Learning-based depth estimation us-
ing a wide-FOV monocular camera [23] was used for vehicle
parking; however, owing to its low accuracy, it is difficult to
adapt it to various environments.

III. DEPTH ESTIMATION

The objective of MDE is to obtain a high-quality and dense
depth from a monocular image using a deep learning network.
Eigen et al. [21] first proposed MDE using deep learning. Since
then, many studies have been carried out to improve the overall
depth estimation [10], [11], [15], [16], [17], [24]. Recently, fol-
lowing the success of the Transformer in language processing,
the visual transformer has been applied for depth estimation
[10], [11], [15], [16]. Despite their high accuracy on the trained
dataset, these methods [10], [11], [15], [16] are computationally
intensive and exhibit inaccurate estimation performance on un-
seen datasets. To address these limitations, a recent approach
[17] has been developed based on zero-shot transfer learning
using multiple depth estimation accuracy with single network
(MiDAS) [25]. However, this method also remains computa-
tionally heavy, and their estimation performance in completely
different environments is unreliable. Therefore, in this study,
we aim to overcome these challenges by developing a fast and
reliable depth estimation method even for unseen environments.

A. Monocular Depth Estimation

The main objective of our network is to predict a pair of
depth images d̂ ∈ R

H×W×1 from a given pair of RGB images
I ∈ R

H×W×3. To achieve this goal, we first design our learning
model as illustrated in Fig. 2(a). Herein, our depth estimation
network consists of encoder, decoder, and skip connections for
the global feature. Inspired by [26], we utilized the encoder
block employing the ConvNeXt v2 model. The encoder learns
the global dependencies of input images. The stem block in
the encoder downsamples the input images to a proper feature
map size. The stem block comprises a 4 × 4 convolutional
layer with a stride of 4, which results in a 4× downsampling
of the input image. The key advantage of this encoder is its
ability to decrease the time needed for image patching, a process
commonly used in existing visual transformers.

To reduce the computational payload on the decoder, we
proposed the decoder with a lightweight attention (LWA) layer
and scaling block [Fig. 2(a)]. In the LWA layer, we em-
ployed depthwise convolution, which was originally introduced
in [27]. Depthwise convolution can be processed faster than
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(a) (b) (c)

Fig. 2. Learning model for the depth estimation. (a) Our proposed model with light-weight attention (LWA) block and scaling block. (b) Conventional
layer [15]. (c) Simplified our LWA layer.

conventional convolutions, but performance may decrease ac-
cordingly. In conventional algorithms such as [15], a 3 × 3 con-
volutional layer with multiple multiplications was utilized in the
decoder [(Fig. 2(b)]. In our article, we also adopted a relatively
large depthwise convolution layer with dimensions of 7 × 7
in the first decoder to better capture local dependencies, em-
ploying a single multiplication. Additionally, we integrated the
pyramid pooling module (PPM) head structure from [28], which
assists in learning appropriate local dependencies for depth-
wise convolution.

We analyze the computation time for each layer. The f conv
t ,

total computation of conventional layer in Fig. 2(b) withC input
channels, K Kerner size and image size H ×W can be written
as follows:

f conv
t = CHW ×K2 × (2.5C + 1) + 3CHW

where K = 3. ft involves the computation for 3 × 3 convo-
lution, batch norm, rectified linear unit (ReLU), both multi-
plication and addition at the end of the convolution process
in Fig. 2(b). The f our

t , total computation of our LWA layer in
Fig. 2(c) can be written as follows:

f our
t = CHW × (2K2

1 + 1.5K2 + 2.5C + 0.5) + 2CHW

where K1 is 7 on the first depthwise convolution and K = 3. For
example with K1 = 7, C = 64, f conv

t = C ×H ×W × 1452.
However, our algorithm only requires f our

t = C ×H ×W ×
274, making our proposed algorithm approximately five times
faster than the conventional algorithm.

The major limitation of the state-of-the-art algorithms in-
cluding NewCRFs [11] and global-local path network (GLP)
algorithm [15] lies in its fixed estimation range, which is con-
strained to a maximum distance of 80 m in the KITTI dataset.
In both algorithms [11], [15], the depth is computed by scaling
the output of the deep learning network by a factor of 80. To
address this issue, we have developed a novel scaling block
to overcome this limitation [Fig. 2(c)]. Due to this structure,
our depth model can learn from diverse datasets with varying
maximum depths.

Fig.3. Scatter plots depicting algorithm efficiency, measured by estima-
tion performance on the KITTI dataset, versus inference time. The size
of each circle corresponds to the number of model-network parameters.

For the loss function, inspired by [21], we used the scale-
invariant (SI) loss function for our deep-learning network as

L= α

√
√
√
√ 1

T

∑

i=1

g2
i −

λ

T 2

(
∑

i=1

gi

)2

(1)

where gi = log(d̂i)− log(di), and T is the number of pixels.
d̂i be a predicted depth and let di be the ground-truth depth.
α= 10, λ= 0.85 are the user-defined parameter.

Parameter comparison on deep-learning models can be
shown in Fig. 3 which illustrates both the estimation accuracy
on the KITTI dataset and the time required to process a single
image. Computation time was measured on a laptop equipped
with an Intel i7-13700H processor, 16GB memory, and an RTX
3050 mobile. The detailed computational time of our method
is described in Table I. In contrast to the state-of-the-art algo-
rithms such as NewCRFs [11] (about 181 ms per image) or
Zoedepth [17] (about 96 ms per image), which demonstrate
excellent performance, our algorithm with depth refinement
achieves outstanding performance with fast computation time.
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TABLE I
AVERAGE COMPUTATION TIME OF OUR PROPOSED METHOD

Monocular Stereo Super Scaling Two Image Avoidance
Depth Matching Pixel Depth (Total) Command

Laptop 42.9[ms] 32.4[ms] 21.7[ms] 1.2[ms] 98.2[ms] 15.0[ms]

Due to the simplified network structure and reduced compu-
tational complexity, we were able to design a network model
that is up to nine times lighter than existing algorithms. Further
detailed analysis will be presented in Section V.

B. Depth Refinement

Learning-based depth estimation has low accuracy when the
real-world scene is different from the training data, whereas
stereomatching-based depth estimation does not easily yield a
dense depth image and is unreliable owing to image texture.

We developed a depth refinement algorithm that matches
learning-based depths with stereomatching-based depths for
accurate depth estimation. Owing to our camera structure, we
first perform a rectification process on the input images for
stereomatching [Fig. 4(a)]. Stereomatching-based depth estima-
tion has poor accuracy for an image with poor texture. Therefore
the estimated value in a poor-texture area is excluded during
depth refinement, and the superpixel in the RGB image, which
is an algorithm for grouping perceptually similar pixels, is used
to select reliable depths. In our article, we utilized the Libelas
[29] for stereomatching.

Inspired by [25], the output of our depth estimation can be
corrected as

d = s(d)d̂ + t(d)

t(d) = median(d), > s(d) =
1
n

n∑

i=1

|di − t(d)|. (2)

However, (2) is difficult to implement in practice because s(d)
and t(d) are computed using a ground-truth depth data only.
To address this problem, we propose a depth refinement algo-
rithm with linear regression, as described in Fig. 4(b). We es-
timate depths corresponding to the stereomatched depths in
the overlapping area of the two images. Assuming that all
pixels in the same superpixel group belong to the same area,
the depth variation within the same superpixel will be small.
Therefore, when selecting stereo depths, only high-reliability
data, in which the change in the depth value within the same
superpixel group is small, are selected. Moreover, any estimated
depth values derived from the representative monocular camera
within the superpixel group that deviated by more than 50%
from the stereo depth were deemed outliers and consequently
excluded from the regression analysis. The utilization of this
superpixel algorithm is crucial for establishing a robust rela-
tionship between the estimated depth and stereo matching. As
shown in Fig. 4(c), without filtering using superpixels, obtain-
ing meaningful correlations becomes challenging. Conversely,
employing superpixels facilitates the identification of meaning-
ful correlations by effectively eliminating outliers.

Using the linear regression algorithm, we estimate the coeffi-
cient in (2). For simplicity, let sd and td be the estimated values

Fig. 4. Regression with learning-based depth prediction and stereo
depth. (a) Depth refinement process. (b) Regression process. (c) Noise
reduction using superpixel.

of s(d) and t(d), respectively. For the depth refinement, we
denote the monocular depth of the ith pixel in the gth superpixel
group (i.e., d̂gi ) and the refined depth corresponding to dgi (i.e.,
dgi ). Using these terms, the refined depth can be calculated as
follows:

dgi = sfd × d̂gi + tfd . (3)

Note that the update process to obtain sfd and tfd is iterative and
performed for every input image. However, in certain situations,
a valid stereomatching value required for the update might not
be available. In such cases, the update should not be performed.
Therefore, the update equation for sd and td using inlier data
can be written as follows:
⎧

⎪⎪⎨

⎪⎪⎩

sd =
∑

dg
i

∑
(d̂g

i )
2−

∑
d̂g
i

∑
dg
i d̂

g
i

n
∑

(d̂g
i )

2−(
∑

d̂g
i )

2

td =
n
∑

d̂g
i d

g
i −

∑
d̂g
i

∑
dg
i

n
∑

(d̂g
i )

2−(
∑

d̂g
i )

2
, if n≥ threshold

sd, td : Do not update(Same as before) otherwise

where n is the number of valid data in the stereomatched depths.
The sd and td pass through a first-order filter with time-constant
α for noise removal.
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Fig. 5. Example of the desired velocity and heading angle command.

IV. AUTONOMOUS FLIGHT ALGORITHM

Our obstacle avoidance strategy is as follows: First, the im-
age is divided into several superpixels. From each superpixel,
we calculate the steering and thrust commands. Finally, the
avoidance command for the drone is generated as illustrated in
Fig. 5. It’s crucial to note that when generating commands for
each superpixel, we take into account the size of the superpixel
in the depth image and its distance from the image center.
These factors are essential in determining accurate and effective
avoidance commands for the navigation of drones.

To achieve our objective, the steering and thrust commands
can be computed

φh
f =

Sn∑

i

φh
i =

Sn∑

i

Dg
iW

h
i

φv
f =

Sn∑

i

φv
i =

Sn∑

i

Dg
iW

v
i (4)

where Wh
i = exp(−(ug

i /HFOV)2) is the horizontal weight for
steering and W v

i = exp(−(vgi /VFOV)2) is the vertical weight.
Sn is the total number of superpixels in an image and the upper
letter, g, denotes representative data in the superpixel group.
ug
i and vgi are the horizontal and vertical bearing angles in the

image with respect to the image center. For example, if u= 0
and v = 0 in the image coordinates with a 110◦ (≈1.92 rad)
horizontal FOV (i.e., HFOV) and a 74◦ (≈1.29 rad) vertical
FOV (i.e., VFOV), ug

i =−0.96 rad and vgi =−0.645 rad. Thus,
Wh

i and W v
i vary from 0.779 to 1.

In (4), we compute the exponential depth, denoted as Dg
i ,

rather than the direct depth represented as −dgi , in the ith
superpixel group. The calculation for Dg

i can be expressed
as follows:

Dg
i = e(dc−dg

i )
NgSn

HimageWimage
(5)

where Himage and Wimage are the horizontal and vertical resolu-
tion of the image, respectively. dgi is the representative depth in
the ith superpixel group and dc is a user-defined parameter that
causes the exponential value to be larger if dgi is smaller than

Fig. 6. Avoidance test on indoor environments: (a) Picture taken during
flight (Case 2). (b) Test results.

dc. Ng is the number of pixels in the gth superpixel group. For
example, if an image with Himage = 640 ×Wimage = 480 pixels
has Sn = 10 superpixel group and each superpixel group has
Ng = 3072 pixels, each superpixel group has the same weight:
(3072 × 10)/(640 × 480) = 0.1. The use of exponential depth
aims to assign a high weight to nearby areas while reducing
the weight significantly for longer distances. Simultaneously,
the weighting of superpixels (i.e., NgSn/HimageWimage) based
on the number of pixels is done to generate commands in the
opposite direction of those with larger volumes or areas.

By exploiting the exponential depth in (5) and (4), we can
define steering angle δh and altitude rate δt respectively as

δh = φh
fexp(−(φh

f/Ga)
2), δv = φv

fexp(−(φv
f/Ga)

2) (6)

where Ga is the user-defined gain. The exponential term in (6)
is designed to smooth the command.

To analyze the performance of the obstacle avoidance algo-
rithm δh, we conducted a simple experiment. In this experiment,
we employed the depth estimation model trained on the NYU
indoor dataset, and the depth refinement algorithm was not
applied. The experimental results are presented in Fig. 6. Case
1 involved an environment where depth estimation was chal-
lenging due to walls lacking texture. Case 2 depicted passing
through a narrow passage, and case 3 represented a curved
driving scenario. During each 10 flight experiments in the same
environment, successful avoidance was achieved in both cases
1 (10/10) and 2 (10/10). An 80% (8/10) avoidance performance
was confirmed in case 3. This is due to the very short distance
between obstacles in case 3, making it difficult to secure a
proper viewing angle.

To arrive at the target point, we should compute the de-
sired velocity vd using the collision probability pcoll. Our flight
algorithm is summarized in Algorithm 1. get-steering-and-
collision-prob function computes steering angle rate δh, altitude
rate δv, and collision probability pcoll. Here, Gc is the user-
defined gain. In δcoll, the term (φh

f + φh
v ) assigns a high weight

in the center of the depth image because Dg
i varies from zero

to one in (5), the denominator Sn normalized the probability.
Therefore, if all depth values in an image are sufficiently small,
the collision probability is close to one.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



6 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

Algorithm 1: Our Method for Drone Control

Input: List of data S = (di, ui, vi, Sn)
Output: Command angle ψt, Velocity vd
Function get-steering-and-collision-prob

Input : S = (dgi , ui, vi, Sn)
(φh

f , φv
f ) ← eq.(6), (δh, δv) ← eq.(8)

pcoll ← δcoll · e(δcoll·Gc)
2
, δcoll ← (φh

f + φv
f )/Sn

return δh, δv , pcoll
end
Function command-for-desired-location

Input : δhl
, δhr

, pcolll , pcollr , Goal(Pg), Current
position(Pc), Current time(tnow)

Data: Previous command angle ψt−1, Previous
collision probability δcollt−1 , Critical time tc

pcollt ← mean(pcolll , pcollr ) · 0.3 + pcollt−1 · 0.7
vd ← Vmax · (1 − pcoll,t)
if distance(Pc, Pg) > Threshold then

δg ← desired-heading(Pc, Pg)
δt ← δhr

− δhl

w, tc ← get-weight(δt)
wtime ← e−0.05·(tnow−tc) · w
δt ← wtime · δt + (1 − wtime) · δg
ψt ← ψt−1 · 0.7 + δt · 0.3

else
vd = 0, ψt = ψt−1

end if
return ψt, vd

end
Function get-weight(δt)

if |δt|< 10◦ then
return w = 0.5, tc: no update

else
return w =min( |δt|20 , 1), tc = tnow

end if
end

command-for-desired-location function generates the desired
command to arrive at the goal point. First, considering the over-
lapping areas of the two images, we calculate pcolll and δhl

from
the left image, and pcollr and δhr

from the right image. Then, we
calculate the overall collision probability, pcollt . Assuming that
the maximum speed is Vmax, a velocity command is generated
such that the velocity becomes zero when the collision prob-
ability is high. The next step is to generate the heading angle
ψt. The target heading angle δg is easily calculated using the
coordinates of the target and current positions. However, it is
crucial to ensure that the effects of the target heading angle δg
and the heading angle for obstacle avoidance δh do not cancel
each other out. To do so, the get-weight function sets the weight
wtime close to one when the avoidance angle is large, ensuring
that only commands to avoid obstacles are executed. When
the collision avoidance angle is small, wtime approaches zero,
allowing the target angle command to be executed for following
the target point. Additionally, the weight was set to change
smoothly through the exponential function, e−0.05·(tnow−tc). To

Fig. 7. Test image generation on KITTI dataset using our configuration.

analyze the performance of our algorithm, we performed a flight
simulation to reach the target point, and detailed results will be
discussed in Section VI-A.

V. PERFORMANCE ANALYSIS FOR DEPTH ESTIMATION

A. Performance Comparison on Outdoor Datasets

Before conducting the tests, we made test datasets from
the KITTI, Virtual KITTI2, ApolloScape, and DDAD datasets.
Since our algorithm requires stereo depth estimation based on
the small overlapping areas of images, we modified each dataset
accordingly as shown in Fig. 7. The modified datasets enabled
us to derive regression parameters (3), which were then utilized
in our estimation algorithm. Our evaluation focused on both
the left and right images from each image pair, allowing for
a comprehensive evaluation. During the depth-refinement pro-
cess, we inversely estimated the baseline between the image
pair for stereo matching by exploiting the actual depth values
provided by KITTI, etc.

The advantage of our depth estimation algorithm lies in its
ability to show fast and accurate performance even within a
lightweight network. Moreover, it exhibits exceptional estima-
tion accuracy even in unseen environments, thanks to the depth-
refinement technique employed. To verify this performance, we
also conducted a comparison of the depth estimation perfor-
mance by applying the algorithm to both the environment in
which it was trained, utilizing the KITTI dataset, and the unseen
dataset, the Virtual KITTI2, DDAD, and ApolloScape dataset.
The results can be found in Table II and Fig. 8.

The accuracy δi, Absrel, and RMSE are calculated as

% of dp s.t.max

(
dp
d∗p

,
d∗p
dp

)

= δ < threshold (7)

where

Absrel =
1
N

∑ ‖dp − d∗p‖
d∗p

,RMSE =

√

1
N

∑

(dp − d∗p)
2,

and dp and d∗p are the estimated and ground-truth depths for
pixel p, respectively. N is the total number of data. In this study,
we use a threshold as δ1 = 1.25, δ2 = (1.25)2, and δ3 = (1.25)3.
In addition, because unfilled regions where depth information is
missing exist in a depth image, we do not compute the accuracy,
δ, if d∗p = 0. Fig. 8 shows the estimated depth images in an out-
door scenario. When comparing on KITTI (i.e, trained:KITTI,
test:KITTI), or vKITTI2 (i.e, trained:KITTI, test:vKITTI2) our
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TABLE II
QUANTITATIVE RESULTS TO SEEN OR UNSEEN DATASETS

Models Datasets Resolution
Inference
Time (ms)

KITTI (Seen) vKITTI2 (Unseen) ApolloScape (Unseen) DDAD (Unseen)
δ1 Absrel RMSE δ1 Absrel RMSE δ1 Absrel RMSE δ1 Absrel RMSE

Monodepth2 [10] K 640*192 9.89 0.931 0.078 3.2444 0.835 0.121 5.515 0.089 0.4895 5.184 0.768 0.160 8.550
GLPDepth [15] K 704*352 75.80 0.967 0.057 2.297 0.884 0.103 4.380 0.063 0.468 5.272 0.827 0.139 7.022
AdaBins [16] K 704*352 90.963 0.964 0.058 2.360 0.853 0.106 4.756 0.074 0.469 5.448 0.752 0.169 8.914

NewCRFs [11] K 704*352 181.58 0.975 0.052 2.072 0.848 0.109 5.359 0.075 0.459 5.277 0.843 0.119 6.177
ZoeDepth [17] M+NK∗1 704*352 96.98 0.966 0.057 2.362 0.850 0.102 5.055 0.074 0.475 4.473 0.824 0.169 8.914

Ours K 704*352 21.66 0.959 0.065 2.436 0.860 0.116 4.766 0.079 0.451 4.874 0.790 0.148 7.918
Ours with

Depth refinement
K 704*352 49.11 ∗2 0.973 0.056 2.030 0.910 0.095 3.977 0.797 0.160 2.977 0.843 0.119 6.779

Note: The best result is in bold, second best is underlined. ∗1 : Midas+NYU+KITTI, ∗2 : Ours with refinement measured the time per single image.

Fig. 8. Depth estimation performance in outdoor environment. (a) Test
depth image on the virtual KITTI2 dataset. (b) Test depth image on the
Apollo dataset. (c) Test depth image on DDAD dataset.

algorithm demonstrated the second-best or the best depth esti-
mation performance, respectively. NewCRFs showed the best
performance in KITTI, but it is very slow for practical appli-
cations. This outstanding result was achieved with rapid and

Fig. 9. Test depth on our collected dataset.

precise inference speed and a lightweight network. Addition-
ally, when applied to ApolloScape (i.e, trained:KITTI, test:
ApolloScape), an unseen environment, our algorithm exhibited
exceptional performance compared to other algorithms. Even
on the DDAD dataset, we demonstrated the most accurate esti-
mation performance. The key factor contributing to this success
was the depth refinement algorithm.

B. Performance Comparison on Our Dataset

Our outdoor test data are collected using two monocular
cameras and Livox LiDAR. The FOV of a monocular camera
is 110-degree, so our stereo setup is 160 degrees. The FOV of
Livox LiDAR is 120 degrees. To obtain the RGB-aligned depth,
the extrinsic parameters are estimated using camera-LIDAR
calibration [30].

Fig. 9 shows the estimated depth images in an outdoor
scenario. We compared our proposed algorithm with state-
of-the-art outdoor depth estimation algorithms including Ad-
aBins [16], GLPdepth [15], Monodepth2 [10], Zoedepth [17],
and NewCRFs [11]. The performance table is summarized in
Table III. Here, our proposed algorithm outperforms other state-
of-art depth estimation algorithms. Our algorithm exhibited
significantly higher depth estimation performance, particularly
in the range of 15 m or less.

We also analyzed depth estimation from images acquired
from a car traveling at 50 km/h to show the advantages of the
MDE algorithm. As shown in Fig. 10, although the Monodepth2
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TABLE III
δ1 QUANTITATIVE RESULTS IN FIG. 9 AND ESTIMATION PERFORMANCE

COMPARISON USING OUR DATASETS

Models
Outdoor Accuracy (32 images, ≤80 m)

image1 image2 image3 image4 δ1 Absrel RMSE
MonoDepth2 [10] 0.465 0.359 0.121 0.276 0.262 0.673 16.495
GLPDepth [15] 0.410 0.188 0.086 0.201 0.320 0.537 16.286
AdaBins [16] 0.231 0.095 0.043 0.059 0.131 1.849 26.518

NewCRFs [11] 0.406 0.342 0.095 0.254 0.298 0.664 14.027
ZoeDepth [17] 0.421 0.128 0.000 0.000 0.298 0.531 13.667

Ours 0.430 0.661 0.697 0.390 0.340 0.422 15.750

Models
Outdoor Accuracy (32 images, ≤15 m)

image1 image2 image3 image4 δ1 Absrel RMSE
MonoDepth2 [10] 0.307 0.122 0.007 0.073 0.157 1.044 9.589
GLPDepth [15] 0.262 0 0.002 0.035 0.176 0.793 7.639
AdaBins [16] 0 0 0 0 0.002 3.213 28.327

NewCRFs [11] 0.032 0.001 0 0.004 0.108 1.062 9.029
ZoeDepth [17] 0.002 0 0 0 0.040 0.912 9.120

Ours 0.563 0.950 0.895 0.695 0.645 0.537 6.258

Note: The bold values indicates the best results.

Fig. 10. Depth estimation performance in outdoor environment (vehicle
speed about 50 km/h).

performed the quickest estimation, the boundary line of the
object was not properly estimated, and it worsens with the
increase in the speed of the quadrotor or the moving obstacle.
The major advantage of our proposed algorithm is its superior
accuracy compared to other benchmark algorithms [10], [11],
especially when the vehicle or obstacle speed is relatively high.
This is because our algorithm demonstrates fast and precise
estimation compared to the other benchmark algorithms.

VI. EXPERIMENTS FOR COLLISION AVOIDANCE

The performance of the proposed algorithm was verified by
comparing it with other algorithms [5], [6] in a simulation
environment. In addition, we conducted real experiments using
our custom-made wide-FOV stereo camera.

A. Simulation Results

For the comparison, we designed the gazebo environment
(Fig. 11). A wide stereo camera was designed, with each camera
having an 82-degrees horizontal FOV. The total horizontal FOV
of our stereo camera was 112-degrees.

The avoidance results are shown in Fig. 11. Fig. 11(a) shows
the obstacle avoidance results of DroNet [6] and a monocular-
based obstacle avoidance [5]. Because the deep learning net-
work of DroNet [6] was trained with real outdoor images, its
performance might degrade owing to the differences between
the real images taken outdoors and the virtual images obtained
from the simulations. The method in [5] also leads to collisions

Fig. 11. Trajectory in simulated flights with a top-down view of the world
(25 m × 25 m). (a) Flights with DroNet [6] (solid red line) and Chakravarty
et al. [5] (dotted red line). (b) Flight with the proposed method (success
case: solid green line, failure case: solid blue line).

Fig. 12. Our flight with 3-D obstacles. (a) 3-D flight in 25 m × 25 m
world. (b) Collision probability with velocity command.

with obstacles in complex environments because it is developed
based on a lower depth estimation performance than the state-
of-the-art depth estimation [16], [24]. Moreover, its collision
probability is high owing to the limited FOV of a monocular
camera. Fig. 11(b) shows our exploration results. Our algorithm
shows the best avoidance performance among all compared
methods [5], [6]. This is because more accurate depth estima-
tion is possible by exploiting the reliable depth obtained from
the stereo matching, although the proposed algorithm also uses
a CNN learned from real images. In addition, the algorithm in
[5] cannot avoid 3-D obstacles, our proposed method can avoid
3-D obstacles as shown in Fig. 12(a) and 12(b). Our algorithm
avoids 3-D collisions satisfactorily.

Fig. 13 shows the simulation results of flying to the tar-
get point using Algorithm 1. The simulations were conducted
in a 100 m × 100 m forest-simulated gazebo environment.
Depth refinement and avoidance commands were generated
using images from two monocular cameras. Depth estimation
was performed using a model trained on the KITTI dataset.
Despite the simulation environment differing from the training
dataset, our algorithm achieved satisfactory estimation perfor-
mance [Fig. 13(c)]. We confirmed that the proposed algorithm
effectively reached the destination without the need for complex
mapping or complex path planning algorithms such as RRT or
optimization-based planning [8].
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Fig. 13. Simulation result in the forest environment (100 m × 100 m).
(a) Flight results. (b) Desired velocity vd and heading angle ψt. and
(c) Snapshot during simulation.

Fig. 14. Experimental setup.

B. Experimental Results

Based on the proposed algorithm, we conducted experi-
ments with an obstacle in an outdoor environment. A quadro-
tor equipped with an onboard computer (Jetson NX) and
two monocular cameras as shown in Fig. 14. Each monoc-
ular camera used in the experiments has a horizontal FOV
of 110 degrees. The total horizontal FOV of our stereo cam-
era is 160 degrees. Thanks to our real-time depth estimation
algorithm, avoidance commands can be generated at a rate
exceeding 10 Hz.

Fig. 15 shows the outdoor experiment for avoiding dynamic
obstacles. The depth estimation performance was satisfactory
even for a person in motion. However, there was a slight error
in depth estimation, but it was small and did not affect obsta-
cle avoidance. The outdoor experiment, using depth estimation
learned from an outdoor dataset, demonstrates that the proposed
algorithm with depth estimation and obstacle avoidance shows

Fig. 15. Picture taken during the outdoor experiment for a dynamic
obstacle.

Fig.16. Trajectory of the quadrotor in the outdoor experiment for a static
obstacle.

satisfactory results even outdoors. Fig. 16 shows the outdoor
experiment for avoiding static obstacles. In the experiment,
we created an environment with virtual walls at −1 m and
6 m and included two static obstacles. The experimental results
demonstrate that the UAV efficiently navigates through the en-
vironment while avoiding the two obstacles.

VII. CONCLUSION

In this study, we have proposed an obstacle avoidance algo-
rithm for micro air vehicles (MAVs) by estimating the depth
using a wide-FOV stereo camera. We exploited a MDE algo-
rithm and improved the estimation accuracy by using a noise re-
moval filter with a superpixel technique. A reliable depth value,
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calculated by stereo-matching in some overlapping regions of
two images, was used to compute the real-world scale. We de-
veloped a simple-to-calculate avoidance algorithm to generate
the target speed and heading angle of an MAV based on the es-
timated depth. We conducted simulations and experiments and
verified that our algorithm ensured safety and computational
efficiency for obstacle avoidance by an MAV.

In our future work to enhance the ability of UAVs, we plan
to focus on two key areas: 1) expanding depth estimation capa-
bilities for broader environments; and 2) enhancing depth esti-
mation performance in extreme weather conditions. To achieve
this goal, we intend to utilize a small number of fisheye cam-
eras to develop recognition technology for wider environments,
enabling 360-degree depth perception. Additionally, we aim to
advance depth estimation technology specifically tailored for
extreme weather environments, such as severe fog.
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