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Abstract— We present a novel calibration method between
single-point LiDAR and camera sensors utilizing an easy-to-
build customized calibration board satisfying the Manhattan
world (MW). Previous methods for LiDAR-camera (LC) cal-
ibration focus on line and plane correspondences. However,
they require dense 3D point clouds from heavy and expensive
LiDAR to simplify alignments; otherwise, these approaches fail
for extremely sparse LiDAR. Compact, lightweight, and sparse
LiDAR and camera sensors are inevitable for micro drones like
Crazyflie with a maximum payload of 15 g, but there are no
explicit calibration methods for them. To address these issues,
we propose a new extrinsic calibration method with a new cal-
ibration board, which rotates like a door to capture geometric
features and align them with images. Once we find an initial
estimate, we refine the relative rotation by minimizing the angle
difference between the grid orientation of the checkerboard
and the MW axes. We demonstrate the effectiveness of the
proposed method through various LC configurations, achieving
its capability and high accuracy compared to other state-of-
the-art approaches. We release our calibration toolkit, source
codes, and how to make the calibration boards for the robotics
community: https://SPLiCE-Calib.github.io/,

I. INTRODUCTION

Extrinsic calibration between LiDAR and camera sensors
is one of the fundamental building blocks for various sen-
sor fusion algorithms and perception tasks, widely used in
robotics, autonomous driving, and computer vision applica-
tions. Although extensive research has focused on LiDAR-
camera (LC) extrinsic calibration [1], [2], [3] so far, most
existing methods are targeting bulky multi-beam LiDAR
sensors (Velodyne VLP-16, Ouster OS1-64, and Livox Avia)
that produce dense point clouds. These high-resolution and
dense point clouds simplify extrinsic calibration tasks thanks
to their rich spatial information, allowing for robust feature
matching and geometric alignments. However, such LiDAR
sensors are often heavy, expensive, and energy-intensive,
making them unsuitable for compact, lightweight robotic
platforms with limited resources.

The need for extremely sparse LiDAR sensors has grown
with their expanding use, such as nano drone navigation [4],
[5], wearable systems [6], motion estimation [7], [8], [9], and
depth completion tasks [10], [11]. These single-point LIDAR
sensors, although significantly constrained in data density,
can offer unique advantages in terms of size, weight, and
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Fig. 1.  Proposed custom-built calibration tool with checkerboard that
rotates like a door (top-left) for single-point LiDAR and camera extrinsic
calibration (top-right). We can achieve accurate spatial alignments between
them with lines and vanishing points in the images (bottom-left) satisfying
Manhattan world (MW), and the accumulated points from single-point
LiDAR (bottom-right).

power consumption, making them ideal for integration into
various robotic and computer vision applications. This lack
of spatial density, however, poses significant challenges for
LiDAR-camera (LC) extrinsic calibration because traditional
methods heavily rely on rich and dense point clouds per
frame from LiDAR sensors.

To address these issues, we propose a novel extrinsic
calibration method between an extremely sparse single-
point LiDAR and a camera, which exploits point and line
features within a custom-built checkerboard satisfying MW
as shown in [T} Our method leverages the structural geometric
properties of an easy-to-build customized calibration tool that
rotates like a door from a camera and a single-point LiDAR,
and spatiotemporally aligns the two sensors. Through intra-
drone and inter-drone single-point LiDAR-camera calibration
experiments across various environments, we demonstrate
the robustness and accuracy of the proposed method, show-
ing its potential and capability for lightweight platforms like
a Crazyflie [12] where classical dense LiDAR sensors are
unsuitable. Our main contributions are as follows:

e We design an easy-to-build calibration target board with

a checkerboard, which rotates like a door to overcome
the extreme data sparsity of a single-point LiDAR.

e We propose a novel extrinsic calibration method that


https://SPLiCE-Calib.github.io/

leverages the structural regularities of the calibration
tool with points and lines obtained by rotating the target
board.

e We validate our approach through extensive LiDAR
and camera configurations on the Crazyflie nano drone,
demonstrating its capability and accuracy compared to
the existing methods.

II. RELATED WORK

Traditional LC Calibration. Estimating the rigid-body
transformation for LiDAR-camera (LC) extrinsic calibration
is well-studied, with various solutions that can be categorized
into target-based [1], [13], [2], [14], target-less [15], [16],
[17], [18], and learning-based [19], [20], [3], [21] methods.
Target-based methods require pre-defined calibration objects
that provide explicit geometric features while target-less and
learning-based methods leverage natural features from the
surrounding environments rather than depending on specific
targets. They require rich and dense point clouds per frame
from heavy, bulky, and expensive LiDAR sensors, allowing
for robust feature matching and geometric alignments be-
tween them.

Target-based Single-Point LC Calibration. Some extrinsic
calibration methods for single-point LiDAR employ geo-
metric constraints to overcome the extreme sparsity of the
LiDAR data. Compared to heavy and dense LiDARs, cali-
brating the relative pose between a single-point LiDAR and
a camera requires more constraints due to the limited data
from a single-point measurement. [22] proposes two methods
using a calibration board printed with circles. They require
either the visible 2D coordinates of the laser dot on the
target board or the spatial pre-defined relationship between
the camera and the target plane. [23] utilizes spherical objects
as targets, applying point-to-line geometric constraints to
achieve precise alignment, improving calibration accuracy
by minimizing the projection error of the detected points
along specific projected lines. [24] handles invisible laser
spots using constraint equations, assuming known relative
poses between infrared and main cameras. [25] establishes
a correspondence between range measurement distances and
the pixel coordinates of laser spots on the imaging plane.
[26] proposes a framework when the visibility of the laser
spot is unclear or inaccurate. By utilizing the local image
intensity of the laser spot boundary, enabling high-accuracy
pixel coordinates even under challenging conditions. Existing
methods rely on visible laser points, making them sensitive
to lighting changes.

Motion-based Single-Point LC Calibration. There are
some calibration approaches to overcome the extreme data
sparsity by accumulating a single-point over time through
estimated the six degrees of freedom (DoF) trajectories with
the help of odometry and SLAM. [27] proposes a method
of estimating LiDAR motion through LiDAR SLAM and
camera motion via visual or fusion SLAM. This method
works without a target but depends on LiDAR odometry
and SLAM accuracy. If 1D data is extended to 2D or 3D,
calibration methods using dense data for 2D or 3D LiDAR

can be applied to 1D. For example, some methods find corre-
spondences by using the edges and right-angle structures of
the target [28], [29]. Additionally, other methods use target
boards with holes or transparent areas to match 2D and
3D coordinates [30], [31], [32], while target-less approaches
exist for reconstructing 3D structures and aligning them with
a 3D point cloud [14], [33]. Motion-based single-point LC
calibration methods have the limitation of requiring precise
and accurate odometry and SLAM results. The proposed
method addresses these limitations by introducing a new
calibration target board and leveraging structural regularities
of the MW model, where all lines are mutually orthogonal,
to overcome these challenges.

III. PRELIMINARY
A. Notations

The 2D pixel coordinates (u,v) are obtained by project-
ing a 3D point (X¢,Ye, Ze) in the camera frame using
the intrinsic matrix. The single-point LiDAR provides only
distance values, so in the LiDAR frame (Fig. E]), the data
lies on the xy-plane. We can represent the relative 6-DoF
pose between the camera and the single-point LiDAR by

following Eq.(I) and Eq.(@).
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where P is the projection of Pr= (Xr,Yr,Zr)" from
the LiDAR frame onto the image plane as given by Eq.(3).
Because Z;, = 0, the remaining components [r; ro t] form
E, the extrinsic parameters between the LIDAR and camera
frames.

B. Gaussian Sphere

A Gaussian sphere is a unit sphere centered at the camera’s
projection center. As shown in Fig. 2] lines detected in the
image, when projected onto this sphere, appear as great
circles. Parallel lines in the images form great circles that
intersect at two antipodal points, and the intersection vector
eventually becomes a vanishing direction (VD). When every
line and plane is perpendicular to a coordinate axis, we call
this configuration the Manhattan world (MW) [34] with the
VDs representing the orientation of the Manhattan world
frame (MF). The surface normals of orthogonal planes satis-
fying the MW, which are mutually perpendicular, align with
the three VDs from the parallel lines. For full details of the
MF on the Gaussian sphere, refer to [35]. The supplementary
material provides a summary of all acronyms.
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Fig. 2. Geometric relationship between the parallel lines and MW on the
Gaussian sphere. The parallel red and blue lines in the image correspond
to the red and blue Manhattan frame (MF) directions, respectively.
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Fig. 3. C and L represent the camera (red) and LiDAR (blue) frames. The
camera provides three vertical and horizontal lines, while three orange points
are estimated from accumulated single-point LiDAR data (left). Black lines
(right) denote the top view of the calibration board with a central hole. The
definitions and geometric meanings of each symbol are detailed in Table m

IV. METHOD

We propose a new calibration method called SPLiCE
(Single-Point LiDAR and Camera Calibration) for estimating
the extrinsic parameters E in [[lI-A] Our key idea is to
establish 2D-3D correspondences between the LiDAR and
camera frames by inducing rotational motion on a new
calibration target board. Furthermore, we refine the relative
rotation between two sensors by aligning the orientation of
the calibration target board with respect to the MW axes.
Fig. @ provides an overview of the proposed SPLiCE.

A. Calibration Target Board

We propose a new calibration target board that can ef-
fectively extract features in both image and LiDAR distance
data. The calibration board is completely flat and includes
multiple black-and-white grids as shown in Fig. [T} Each grid
row extends 300 mm horizontally, with a square hole at the
lower center of the grid. Fig. 3] shows that it can rotate 90
degrees around the rightmost vertical line ({,,-), which serves
as its axis of rotation with a red arc tracing the rotation path
of the board’s endpoint as shown in Fig. [I] We assume that
the rotation axis of the calibration board and the z-axis of
the LiDAR frame should be parallel.

The single-point LiDAR provides only a distance value
(dy) in one direction. We utilize the square hole in the target
board to extend the distance value into three points, requiring
knowledge of both the grid and hole width. Details are in
[[V-B| In the image from the camera, as shown at the bottom

TABLE I
DEFINITION OF KEY SYMBOLS

Symbol || Definition

do Distance when LiDAR first hits the calibration board
dend Distance when LiDAR last hits the calibration board
dy Distance between points A and p,-

0 Rotation angle of the calib. board from ¢ = 0 to end
o Incidence angle of LiDAR to the calib. board at t = 0
L Width of the square grid and hole

left of Fig.[T] it perceives the square hole as a black grid due
to the black wall visible through it and does not recognize
it as an open hole.

B. Feature Extraction

Three Points Estimation. The distance at ¢ = 0 is denoted
as dp, and d.,,4 is the distance measured at the final detection
time of the target board by the LiDAR through the square
hole as shown in Fig. 8] We keep the target board stationary
for over 20 seconds at ¢ = 0 and use the average of the
measurements during this period to minimize the impact of
the noise in low-cost and sparse LiDAR measurements. d;
is the distance at ¢ = 4, and d.,q is where Eq. @) fails,
marking a significant distance change.

‘ |di —di—a| = |di-1 —di—a|
|dit1 —di| —|d; — di—1]

where € serves as the threshold and is empirically set to 0.05
m. After rotating at least three times, we utilize the average
value at d,,q.

As shown in Fig. 2] we obtain the green direction of
the MW frame by the detected parallel lines on the board
in the image. By comparing the MW frame at ¢ = 0
and t = end, we determine the rotation angle 6 of the
calibration board. Given D = d.,q — do, L, and 6 (see
Fig. [B), we can also calculate the incidence angle «, which
is a compensation factor to mitigate the assumption that the
z-axis of the LiDAR frame and the calibration board should
be perpendicular. We define S = 90° — o — 6 and its valid
range is 8 € [0°,90° — 4] due to its geometric properties.
We can obtain « by solving the following equation from the
laws of sines and cosines as follows:

Dsin
/L2 + D% —2LD cos

where L, D, and 6 are all known values (for full details and
derivations, refer to the supplementary materials).

We compute d, as d, = Dsin3/sin6f to obtain the
position of the three-point features (p,., p., p;) for each i-th
frame as follows:

1|>e€ 4

f = arcsin

S

p.. = (do — dy sina, —d,, cos @)

p. = (dy — dysina + Lsin6;, —d, cosa + Lcosf;) (6)
pi = (do — dysina + 2L sin6;, —d, cos a + 2L cos 0;)
2D Line Extraction. We follow the next two steps to detect
lines on the calibration target board reliably. First, we extract

all candidate lines with both LSD [36] and Hough transform.
We filter the detected lines to retain lines identified by both
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Fig. 4. Overview of the proposed single-point LC extrinsic calibration method. (a) We detect three points (red) based on the accumulated points (blue)

from single-point LiDAR by utilizing the geometric characteristics of the proposed new calibration target board. (b) We extract three parallel vertical and
horizontal lines in the image and detect the MW aligned to them. (c) Given three points, parallel lines, and the MW, we find the relative rotation and
translation between two sensors by minimizing the point-to-line distances and angle differences.

LSD and Hough Transform. A line is considered the same in
both methods if its endpoints differ by less than 1.5 pixels
and its slope angle (¢) deviates by less than 1.5 degrees.
We obtain six reliable lines 1" = (1!, 1%, 1, 1i,, 1, 1%,)
from each i-th frame in Eq. (7). If the detected lines from
the metal frame or wall remain after filtering, we remove
them by discarding those with inter-frame differences below
a threshold § close to zero.

I = { line’ | (||pHore" — pLSP|| < 1.5 pixel) N

end

, , @)
(I$tough — éLsp| < 1.5°) N ([Plaa — Plng | > 5)}

C. Point-Line Constraints Optimization

We obtain the three points Pr.=(p;,p¢.p,-) and project them
onto the image plane in Eq.(3)), representing as magenta dots
in Fig. 5] We categorize the six lines into two groups, three
horizontal 1;, = (Ip¢, lpe,lnr) and three vertical lines [, =
(Lyislyr, lye) based on their slopes to establish constraints
between each group and the re-projected points p; =
(ﬁlaﬁc7ﬁr)~

First, pr, should lie on the [, according to the geometric
properties of the proposed calibration target board. In the
image plane, we measure the Euclidean distance (d;, d., d;)
between each line I, = (I, lyc, 1) and corresponding points
pr, = (Pi, Pe, Prr)- The cost function consists of the squared
sum of point-to-line distances. Second, we can generate a
line that extends from py,, and obtain three intersection points
(p1,p2,p3) with the line [,,, which should correspond to the
vanishing point formed by the horizontal lines. Originally,
the vanishing points of the three lines should coincide, but
due to low resolution and pixel noise, the intersections do
not align. We obtain three separate intersection points. In the
each frame ¢, we define the coordinates of the intersection
points as {p} | j € {1,2,3}} . Therefore, we determine the
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Fig. 5. Three points from LiDAR are re-projected to the image plane
(magenta) at the wrong locations with an initial relative pose (left). After
optimizing the point-line constraints (right), they are on the three vertical
lines well (yellow), and the line connecting the three points is parallel to
the horizontal lines.
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vanishing point using Eq. (§).
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We add a constraint that requires (p;,p2,p3) to be the
same as p.. Thus, the distance between the two vanishing
points is added to the cost function. We estimate the extrinsic
parameters E by solving the following nonlinear problem
Eq.(9) using the Levenberg-Marquardt (LM) method:

N 3 3
* g — . i)\2
R 6" —argmin} |} (d)?+ >

i=1 \ k=1 j

(S )
1

where N is the number of paired images and LiDAR scans.

D. Manhattan World Refinement

Manhattan World Detection. Since the calibration target
board is perfectly flat, all lines on the target board form a
Manhattan world, so each frame has a different Manhattan
frame (MF). We employ 3-line RANSAC [37] to find the
current MF in Fig. [f] The sampling-based method produces
three VPs, but the exact orientation remains unknown, re-
quiring us to choose one specific case from six possibilities.



Fig. 6. Top view of the calibration target board in the LiDAR frame (left).
i represents the normal of the target board expressed in the LiDAR frame,
and 0; and « are from Eq.(6). V is il expressed in the camera frame (right)
given R* from Eq.(9). V should be parallel to one of the MW axes.

Since we already classify the vertical and horizontal lines,
we can leverage this to estimate each approximate VD and
denote this frame as the rotation matrix closest to the true
orientation, R;. We define the Manhattan frame (MF) as the
set of candidate rotational matrices Ry (where k = 1,...,6)
that have a rotation error § with respect to R, close to either
0 or 180 degrees. We can determine the MF as a single frame
based on the rotation error ¢ by Eq.(I0).

6 = arg min (min|3/,[180° = 8]) (10)
where we validate MW-based tracking accuracy with Opti-
Track (for full details, refer to the supplementary materials).
Manhattan World Refinement. We further refine the rela-
tive 3-DoF rotation between two sensors for better accuracy.
In Fig. [6] the normal vector n of the calibration target board
expressed in the LiDAR frame can be transformed to the V
expressed in the camera frame given the relative rotation:

cos ¢
n= [sing| ,R*=[rl r2 r3]ecSOQ) (11)
0
Vi Cos ¢
V= |V| =R"|sing (12)
Vs 0

¢ can be expressed as 0;-+c, where Eq. (6) provides 6; and a.
Since V should be parallel to the direction of VD3, which is
one of the MW axes in the camera frame, and thus the angle
1) between them should be zero. We find the optimal relative
rotation by minimizing the following cost function Eq.(T3)
using the Levenberg-Marquardt (LM) algorithm:

R** = arg min ( - VD3 — 1) (13)
w2

where N is the number of paired image and LiDAR scans,

and the final extrinsic parameters E consist of to; from

Eq.(©) and R¢ . from Eq.(I3). Note that we use R* from

the previous step as an initial value for the MW refinement.
V. EVALUATION

A. Calibration Setup

We employ the Crazyflie 2.1 [12] as a micro-robotic
platform, which is 9.2 mm x 9.2 mm, weighs 27 g, and

Al Deck Multi-Ranger Deck

Al Deck
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Deck

Fig. 7. Four different configurations of single-point LiDAR (multi-ranger
deck) and camera (Al deck) sensors. In A and B, both sensors are mounted
on the same Crazyflie (intra-drone), but at different heights, while in C and
D, two Crazyflies are equipped with either the Al deck or the multi-ranger
deck (inter-drone).
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Fig. 8. We need to measure the height Z between the single-point LIDAR
and the ground. We mark a black circle on the corresponding point, and
identify these three points by zooming in on each image frame.

has a maximum payload of 15 g, only enabling compact
and lightweight sensors like the multi-ranger deck equipped
with VL53L1x ToF sensors in four directions for distance
measurements. We obtain the forward-facing distance values
from the multi-ranger deck at 10 Hz to generate a point cloud
and continuously accumulate each data point. We commu-
nicate with Crazyflie using a laptop connected through the
Crazyradio 2.0. We obtain the image sequences from the Al
deck equipped with an HMO1B0O monochrome camera, with
a resolution of 324 x 244 pixels. The Al deck communicates
with the laptop via WiFi, and each image has its own
timestamp to be synchronized with Crazyflie’s internal clock.
Figm shows the multi-ranger deck, AI deck, and various
sensor configurations. We calibrate the camera’s intrinsic pa-
rameters in advance and manually measure relative rotation
and translation between the multi-ranger deck and Al deck
for an initial guess during the nonlinear optimization in the
proposed SPLiCE.

We evaluate four different configurations: intra-drone (A
and B) and inter-drone (C and D) cases in Fig. m We place
the multi-ranger deck 17 and 9 cm above the ground in A and
B, respectively. To evaluate robustness, significant transla-
tional and rotational misalignments between the LiDAR and
the camera are introduced in inter-drone setups (C and D).
To this end, we mount the AI deck and multi-ranger deck
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Fig. 9. (Top) Reprojection error distribution across the four configurations:
A, B, C, and D. (Bottom) Pixel error statistics of the three points (left,
center, right). Our SPLiCE with MW achieves the most accurate results for
all configurations and points.

on separate Crazyflies, positioned apart to simulate diverse
scenarios. In particular, we rotate the Al deck 90° around
the z-axis of the camera frame. In both C and D cases, the
multi-ranger deck is positioned 17 cm above the ground.

B. Reprojection Error

We first evaluate the accuracy of extrinsic calibration
methods with respect to the reprojection error metric in
pixels. We re-project the three points from the single-point
LiDAR onto the image plane, and compute the distances
between the reprojected and true points on the calibration
target board. We measure the height of Crazyflie to the
ground and mark the points on the target board, selecting
them as ground-truth points for all frames as shown in Fig.[§]

TABLE I
REPROJECTION ERROR RESULTS [PIXEL]

Intra-Drone Inter-Drone

A B C D
PLO [38] 7.13 562 691 6.69
SPLiCE w/o MW 436 291 334 453
SPLiCE 324 255 259 295

The baseline [38] estimates extrinsic parameters between
2D dense LiDAR and the camera by minimizing the point
and line distance error. [38] utilizes only three points and
vertical lines, so we implement and customize it to our
single-point LiDAR data, referred to as PLO (Point-Line
Optimization). We also include the calibration results with
and without performing the MW refinement step to observe

TABLE III
RELATIVE TRANSLATION AND ROTATION RESULTS IN INTER-DRONE

Inter-Drone tx [m] ty [m] tz[m] roll [deg] pitch [deg] yaw [deg]
C

SPLiCE w/o MW 0.0098  0.0110  0.0135 1.8344 1.9867 2.0475
SPLiCE 0.0098  0.0110  0.0135 1.1639 1.3869 1.2061
MinivVO 0.0253  0.0314  0.0288 - 6.3924 8.8846
D

SPLiCE w/o MW 0.0149  0.0173  0.0187 2.0433 1.9001 2.7163
SPLiCE 0.0149  0.0173  0.0187 1.2314 1.0983 1.1863
MinivVO 0.0307  0.0696  0.0471 - 7.1024 9.4527

the effectiveness of the step. Table [lT] shows our comparison
results by measuring the RMS pixel distance relative to
the ground-truth. The proposed SPLiCE demonstrates an
accuracy of 2.83 pixels on average.

Fig. [I0] shows the reprojection results of three points
from single-point LiDAR onto the image plane with the
proposed SPLIiCE. It includes four image frames for each
configuration, capturing the movements of the calibration
target board over time from left to right. In each frame,
the green points are consistently closer to the white ground
truth points than the yellow points. We can also observe the
effectiveness of the MW refinement step in the proposed
method, improving overall accuracy.

We also investigate the reprojection error in terms of the
number of LiDAR and camera pairs. The number of pairs
is randomly chosen from 24 pairs. As shown in Fig.[T1] the
error value is reduced as the number of pairs increases. With
more than 20 pairs, the results improve by over five times
compared to using fewer than 10 pairs.

C. Ground Truth Comparison

In experiments with two Crazyflies, each equipped with
a multi-ranger deck and an Al deck, as in inter-drone C,
D shown in Fig. [/, we attach artificial markers to enable
comparison with the ground truth from the OptiTrack motion
capture system. We compare the extrinsic calibration results
with the ground truth errors, as shown in Table m The
translation error remains the same, owing to the additional
refinement applied only to the relative rotation. We achieve
an error level of approximately 0.01 m, with rotation errors
within about 1 degree. The low-resolution images from the
Al deck reduce the precision of lines when using pixel
vanishing points. However, the sampling-based RANSAC
algorithm improves accuracy by identifying an MW closer
to the actual one, producing a more accurate rotation matrix
for the extrinsic parameters.

D. Comparison with Other Methods

We evaluate the proposed SPLiCE against two other
methods: the checkerboard-based [8] and motion-based [39]
extrinsic calibration approaches. It is noteworthy that most
existing single-point LiDAR calibration methods assume
the laser pointer is always visible [25], [22]. They also
rely heavily on either accurate odometry [27] or structured
pattern detection [23], requiring a large number of images for
extrinsic calibration. We cannot apply these approaches be-
cause the proposed method targets an invisible laser dot and
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Fig. 11. Accuracy of reprojection error of the proposed method versus the
number of LiDAR and camera pairs. Extrinsic calibration stabilizes with
about 15 or more LiDAR-camera pairs.

operates in minimally textured environments with extremely
sparse calibration data.

MiniVO [8] relies on checkerboard images and requires
at least 40 pairs for calibration, making data collection
cumbersome and impractical for lightweight applications due
to the difficulty of obtaining sufficient calibration data. The
board must be positioned at various angles while staying
within the single-point LiDAR’s measurement range, making
it difficult to acquire enough valid calibration pairs. Table [IT]]
shows the results of the proposed SPLiCE and MiniVO [8].
The smallest error for each dataset is bolded. Our method

SPLiCE SPLiCE

Troe MiniVO

Single-Point LIDAR

MinivVO p
Single-Point LIDAR

Camera

—
Camera
(a) Top View (b) Side View
Fig. 12. Qualitative comparison results of the proposed SPLIiCE,

MiniVO [8], and the ground truth LiDAR poses with respect to the camera
frame. The proposed method shows more qualitatively accurate extrinsic
calibration results.

achieves higher accuracy with only about 15 valid pairs,
whereas MiniVO requires more than three times as many in
a controlled environment. Fig. [I2] also shows this improve-
ment, demonstrating the superior alignment of our estimated
extrinsic parameters with the ground truth from OptiTrack.

To implement [39], we mount the flow deck to the
Crazyflie and run visual-inertial odometry (VIO) to simulate
a virtual 2D LiDAR sensor like Hokuyo UST-10LX by
accumulating single-point LiDAR data along estimated tra-
jectories from VIO. It calibrates the sensor by minimizing re-
projection error, associating planes in the camera frame with
laser points on the intersection line through a linear least-
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Fig. 13.  The blue dots represent the point clouds accumulated by the
single-point LiDAR data, and the red dots denote the estimated Crazyflie
poses from VIO. Green dots represent the inaccurate reprojection results
using extrinsic parameters from the virtual 2D LiDAR approach [39].

squares problem. Fig. [I3] shows the comparison results with
the proposed SPLiCE. The extrinsic parameters estimated
from virtual 2D LiDAR calibration result in an average pixel
error of 42 pixels, while our SPLiCE reduces it to 3 pixels.
Small drift errors from VIO contaminate the accumulated
point cloud, misaligning 3D-2D correspondences and leading
to severe inaccurate extrinsic calibration.

VI. CONCLUSION

We present a novel calibration method for single-point
LiDAR and a camera calibration algorithm, introducing a
specially designed rotating calibration board. The target
board contains holes that accumulate single-direction LiDAR
data to represent the MW frame, enabling estimation of
three points. Although the camera does not recognize the
holes in the images, the black-and-white grid pattern allows
the detection of only the lines on the target board. After
determining the extrinsic parameters using point-line and
point-point distances, we improve accuracy by utilizing the
regularities of the MW structure. We evaluate the calibration
for intra-drone and inter-drone cases and compare the per-
formance using OptiTrack. Future works involve integrating
the proposed calibration into SLAM frameworks for onboard
use in micro drones, enabling localization and mapping with
sparse or single-direction LiDAR.
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